Awesome
💊 cMolGPT: A Conditional Generative Pre-Trained Transformer for Target-Specific De Novo Molecular Generation
Implementation of "cMolGPT: A Conditional Generative Pre-Trained Transformer for Target-Specific De Novo Molecular Generation". Enforcing target embeddings as queries and keys.
Please feel free to open an issue or email wenlu.wang.1@gmail.com and ye.wang@biogen.com if you have any questions. We will respond as soon as we can.
Dependencies
environment_v100.yml tested on NVIDIA V100
environment_a6000.yml tested on RTX A6000
Data
Mol_target_dataloader
Please download this repo and put the folder in the root directory. If you would like to finetune with your own target data, please replace 'target.smi'.
How to run
*unzip train.sim.zip
Train
python3 main.py --batch_size 512 --mode train \
--path model_base.h5
Fine-tune
python3 main.py --batch_size 512 --mode finetune \
--path model_base.h5 --loadmodel
*In the case of fine-tuning, the base model will be overwritten in place.
*You can change the number of targets in model_auto.py.
Infer/Generate
python3 main.py --mode infer --target [0/1/2/3] --path model_finetune.h5
No target
python3 main.py --mode infer --target 0 --path model_finetune.h5
Target 2
python3 main.py --mode infer --target 2 --path model_finetune.h5