Awesome
Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021)
This repository is the official implementation of Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks .
Updates
- 27.06.2022 Major Bugfix :beetle: A bug in the panoptic metrics was driving the Recognition Quality down artificially. The bug is now fixed and the metrics have been updated here and on Arxiv. Across experiments, solving this bug improved PQ by ~2-3pts on PASTIS. See this issue for more details.
Contents
This repository contains the following PyTorch code:
- Implementation of U-TAE spatio-temporal encoding architecture for satellite image time series
- Implementation of Parcels-as-Points (PaPs) module for panoptic segmentation of agricultural parcels
- Code for reproduction of the paper's results for panoptic and semantic segmentation.
Results
Our model achieves the following performance on :
PASTIS - Panoptic segmentation
Our spatio-temporal encoder U-TAE combined with our PaPs instance segmentation module achieves 40.4 Panoptic Quality (PQ) on PASTIS for panoptic segmentation. When replacing U-TAE with a convolutional LSTM the performance drops to 33.4 PQ.
Model name | SQ | RQ | PQ |
---|---|---|---|
U-TAE + PaPs (ours) | 81.5 | 53.2 | 43.8 |
UConvLSTM+PaPs | 80.2 | 43.9 | 35.6 |
PASTIS - Semantic segmentation
Our spatio-temporal encoder U-TAE yields a semantic segmentation score of 63.1 mIoU on PASTIS, achieving an improvement of approximately 5 points compared to the best existing methods that we re-implemented (Unet-3d, Unet+ConvLSTM and Feature Pyramid+Unet). See the paper for more details.
Model name | #Params | OA | mIoU |
---|---|---|---|
U-TAE (ours) | 1.1M | 83.2% | 63.1% |
Unet-3d | 1.6M | 81.3% | 58.4% |
Unet-ConvLSTM | 1.5M | 82.1% | 57.8% |
FPN-ConvLSTM | 1.3M | 81.6% | 57.1% |
Requirements
PASTIS Dataset download
The Dataset is freely available for download here.
Python requirements
To install requirements:
pip install -r requirements.txt
(torch_scatter
is required for the panoptic experiments.
Installing this library requires a little more effort, see the official repo)
Inference with pre-trained models
Panoptic segmentation
Pre-trained weights of U-TAE+Paps are available here
To perform inference of the pre-trained model on the test set of PASTIS run:
python test_panoptic.py --dataset_folder PATH_TO_DATASET --weight_folder PATH_TO_WEIGHT_FOLDER --res_dir OUPUT_DIR
Semantic segmentation
Pre-trained weights of U-TAE are available here
To perform inference of the pre-trained model on the test set of PASTIS run:
python test_semantic.py --dataset_folder PATH_TO_DATASET --weight_folder PATH_TO_WEIGHT_FOLDER --res_dir OUPUT_DIR
Training models from scratch
Panoptic segmentation
To reproduce the main result for panoptic segmentation (with U-TAE+PaPs) run the following :
python train_panoptic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR
Options are also provided in train_panoptic.py
to reproduce the other results of Table 2:
python train_panoptic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_NoCNN --no_mask_conv
python train_panoptic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_UConvLSTM --backbone uconvlstm
python train_panoptic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_shape24 --shape_size 24
Note: By default this script runs the 5 folds of the cross validation, which can be quite long (~12 hours per fold on a Tesla V100).
Use the fold argument to execute one of the 5 folds only
(e.g. for the 3rd fold : python train_panoptic.py --fold 3 --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR
).
Semantic segmentation
To reproduce results for semantic segmentation (with U-TAE) run the following :
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR
And in order to obtain the results of the competing methods presented in Table 1 :
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_UNET3d --model unet3d
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_UConvLSTM --model uconvlstm
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_FPN --model fpn
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_BUConvLSTM --model buconvlstm
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_COnvGRU --model convgru
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_ConvLSTM --model convlstm
Finally, to reproduce the ablation study presented in Table 1 :
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_MeanAttention --agg_mode att_mean
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_SkipMeanConv --agg_mode mean
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_BatchNorm --encoder_norm batch
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_SingleDate --mono_date "08-01-2019"
Reference
Please include a citation to the following paper if you use the U-TAE, PaPs or the PASTIS benchmark.
@article{garnot2021panoptic,
title={Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks},
author={Sainte Fare Garnot, Vivien and Landrieu, Loic },
journal={ICCV},
year={2021}
}
Credits
-
This work was partly supported by ASP, the French Payment Agency.
-
Code for the presented methods and dataset is original code by Vivien Sainte Fare Garnot, competing methods and some utility functions were adapted from existing repositories which are credited in the corresponding files.