Home

Awesome

Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly

License: MIT

Code for this paper Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly. [NeurIPS'21]

Tianlong Chen, Yu Cheng, Zhe Gan, Jingjing Liu, Zhangyang Wang.

Overview

Training generative adversarial networks (GANs) with limited data generally results in deteriorated performance and collapsed models. To conquerthis challenge, we are inspired by the latest observation of Kalibhat et al. (2020); Chen et al.(2021d), that one can discover independently trainable and highly sparse subnetworks (a.k.a.,lottery tickets) from GANs. Treating this as aninductive prior, we decompose the data-hungry GAN training into two sequential sub-problems:

Both sub-problems re-use the same small training set of real images. Such a coordinated framework enables us to focus on lower-complexity and more data-efficient sub-problems, effectively stabilizing trainingand improving convergence.

Methodology

Experiment Results

<img src = "Figs/res.png" align = "center" width="60%" hight="60%">

More experiments can be found in our paper.

Implementation

For the first step, finding the lottery tickets in GAN is referred to this repo.

For the second step, training GAN ticket toughly are provides as follow:

Environment for SNGAN

conda install python3.6
conda install pytorch1.4.0 -c pytorch
pip install tensorflow-gpu==1.13
pip install imageio
pip install tensorboardx

R.K. Donwload fid statistics from Fid_Stat.

Commands for SNGAN

R.K. Limited data training for SNGAN

Example for full model training on 20% limited data (--ratio 0.2):

python train_less.py -gen_bs 128 -dis_bs 64 --dataset cifar10 --img_size 32 --max_iter 50000 --model sngan_cifar10 --latent_dim 128 --gf_dim 256 --df_dim 128 --g_spectral_norm False --d_spectral_norm True --g_lr 0.0002 --d_lr 0.0002 --beta1 0.0 --beta2 0.9 --init_type xavier_uniform --n_critic 5 --val_freq 20 --exp_name sngan_cifar10_adv_gd_less_0.2 --init-path initial_weights --ratio 0.2

Example for full model training on 20% limited data (--ratio 0.2) with AdvAug on G and D:

python train_adv_gd_less.py -gen_bs 128 -dis_bs 64 --dataset cifar10 --img_size 32 --max_iter 50000 --model sngan_cifar10 --latent_dim 128 --gf_dim 256 --df_dim 128 --g_spectral_norm False --d_spectral_norm True --g_lr 0.0002 --d_lr 0.0002 --beta1 0.0 --beta2 0.9 --init_type xavier_uniform --n_critic 5 --val_freq 20 --exp_name sngan_cifar10_adv_gd_less_0.2 --init-path initial_weights --gamma 0.01 --step 1 --ratio 0.2

Example for sparse model (i.e., GAN tickets) training on 20% limited data (--ratio 0.2) with AdvAug on G and D:

python train_with_masks_adv_gd_less.py -gen_bs 128 -dis_bs 64 --dataset cifar10 --img_size 32 --max_iter 50000 --model sngan_cifar10 --latent_dim 128 --gf_dim 256 --df_dim 128 --g_spectral_norm False --d_spectral_norm True --g_lr 0.0002 --d_lr 0.0002 --beta1 0.0 --beta2 0.9 --init_type xavier_uniform --n_critic 5 --val_freq 20 --exp_name sngan_cifar10_adv_gd_less_0.2 --init-path initial_weights --gamma 0.01 --step 1 --ratio 0.2 --rewind-path <>

Environment for BigGAN

conda env create -f environment.yml studiogan

Commands for BigGAN

R.K. Limited data training for BigGAN

Example:

python main_ompg.py -t -e -c ./configs/TINY_ILSVRC2012/BigGAN_adv.json --eval_type valid --seed 42 --mask_path checkpoints/BigGAN-train-0.1 --mask_round 2 --reduce_train_dataset 0.1 --gamma 0.01 

Example:

python main_ompg.py -t -e -c ./configs/CIFAR100_less/DiffAugGAN_adv.json --ratio 0.2 --mask_path checkpoints/diffauggan_cifar100_0.2 --mask_round 9 --seed 42 --gamma 0.01

Pre-trained Models

https://www.dropbox.com/sh/7v8hn2859cvm7jj/AACyN8FOkMjgMwy5ibVj61IPa?dl=0

https://www.dropbox.com/sh/gsklrdcjzogqzcd/AAALlIYcWOZuERLcocKIqlEya?dl=0

https://www.dropbox.com/sh/epuajb1iqn5xma6/AAAD0zwehky1wvV3M3-uesHsa?dl=0

https://www.dropbox.com/sh/y3pqdqee39jpct4/AAAsSebqHwkWmjO_O8Hp0hcEa?dl=0

https://www.dropbox.com/sh/2rmvqwgcjir1p2l/AABNEo0B-0V9ZSnLnKF_OUA3a?dl=0

https://www.dropbox.com/sh/pbwjphualzdy2oe/AACZ7VYJctNBKz3E9b8fgj_Ia?dl=0

https://www.dropbox.com/sh/82i9z44uuczj3u3/AAARsfNzOgd1R9sKuh1OqUdoa?dl=0

https://www.dropbox.com/sh/yknk1joigx0ufbo/AAChMvzCsedejFjY1XxGcaUta?dl=0

Citation

@misc{chen2021ultradataefficient,
      title={Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly}, 
      author={Tianlong Chen and Yu Cheng and Zhe Gan and Jingjing Liu and Zhangyang Wang},
      year={2021},
      eprint={2103.00397},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Acknowledgement

https://github.com/VITA-Group/GAN-LTH

https://github.com/GongXinyuu/sngan.pytorch

https://github.com/VITA-Group/AutoGAN

https://github.com/POSTECH-CVLab/PyTorch-StudioGAN

https://github.com/mit-han-lab/data-efficient-gans

https://github.com/lucidrains/stylegan2-pytorch