Awesome
<center> LLaGA: Large Language and Graph Assistant</center>
<p align="center"> <a href="https://arxiv.org/abs/2402.08170"><img src="https://img.shields.io/badge/Arxiv-2402.08170-B31B1B.svg"></a> <a href="https://github.com/VITA-Group/LLaGA"><img src="https://img.shields.io/github/stars/VITA-Group/LLaGA"></a> </p>The official implementation of work "LLaGA: Large Language and Graph Assistant".
<img src="doc/main.png" width="90%">News
2024.5.1: LLaGA has been accepted by ICML 2024! š š š
Step 1: Environment Preparation
# create a new environment
conda create -n llaga python=3.10
conda activate llaga
# install pytorch. Modify the command to align with your own CUDA version.
pip3 install torch --index-url https://download.pytorch.org/whl/cu118
# install related libraries
pip install -r requirements.txt
# install flash-attn
pip install flash-attn --no-build-isolation
# install pyg
pip install torch_geometric
pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.1.0+cu118.html
Step 2: Data Preparation
Download our datasets from Box (updated link prediction data on 4/11/2024). And move the processed data to ./dataset
.
āāā README.md
āāā __init__.py
āāā doc
āāā dataset
āĀ Ā āāā ogbn-arxiv
āĀ Ā āĀ Ā āāā sampled_2_10_test.jsonl
āĀ Ā āĀ Ā āāā sampled_2_10_train.jsonl
āĀ Ā āĀ Ā āāā edge_sampled_2_10_only_test.jsonl
āĀ Ā āĀ Ā āāā edge_sampled_2_10_only_train.jsonl
āĀ Ā āĀ Ā āāā processed_data.pt
āĀ Ā āĀ Ā āāā roberta_x.pt
āĀ Ā āĀ Ā āāā sbert_x.pt
āĀ Ā āĀ Ā āāā simteg_*_x.pt
āĀ Ā āāā ogbn-products
āĀ Ā āĀ Ā āāā sampled_2_10_test.jsonl
āĀ Ā āĀ Ā āāā sampled_2_10_train.jsonl
āĀ Ā āĀ Ā āāā edge_sampled_2_10_only_test.jsonl
āĀ Ā āĀ Ā āāā edge_sampled_2_10_only_train.jsonl
āĀ Ā āĀ Ā āāā processed_data.pt
āĀ Ā āĀ Ā āāā roberta_x.pt
āĀ Ā āĀ Ā āāā sbert_x.pt
āĀ Ā āĀ Ā āāā simteg_*_x.pt
āĀ Ā āāā pubmed
āĀ Ā āĀ Ā āāā sampled_2_10_test.jsonl
āĀ Ā āĀ Ā āāā sampled_2_10_train.jsonl
āĀ Ā āĀ Ā āāā edge_sampled_2_10_only_test.jsonl
āĀ Ā āĀ Ā āāā edge_sampled_2_10_only_train.jsonl
āĀ Ā āĀ Ā āāā processed_data.pt
āĀ Ā āĀ Ā āāā roberta_x.pt
āĀ Ā āĀ Ā āāā sbert_x.pt
āĀ Ā āĀ Ā āāā simteg_*_x.pt
āĀ Ā āāā cora
āĀ Ā āĀ Ā āāā sampled_2_10_test.jsonl
āĀ Ā āĀ Ā āāā sampled_2_10_train.jsonl
āĀ Ā āĀ Ā āāā edge_sampled_2_10_only_test.jsonl
āĀ Ā āĀ Ā āāā edge_sampled_2_10_only_train.jsonl
āĀ Ā āĀ Ā āāā processed_data.pt
āĀ Ā āĀ Ā āāā roberta_x.pt
āĀ Ā āĀ Ā āāā sbert_x.pt
āĀ Ā āĀ Ā āāā simteg_*_x.pt
āĀ Ā āāā laplacian_2_10.pt
āĀ Ā āāā laplacian_2_20.pt
āĀ Ā āāā laplacian_2_5.pt
āāā eval
āāā model
āāā requirements.txt
āāā scripts
āāā train
āāā utils
Step 3: Training
To execute the training process, you can run either ./scripts/train.sh
or ./scripts/train_deepspeed.sh
. The usage instructions are as follows:
#Auguments
# $1 = model type, e.g. vicuna, vicuna_4hop
# $2 = training task Use nc/lp/nd for single task. For multiple tasks combined, connect these abbreviations with '-', e.g. nc-lp
# $3 = dataset arxiv/products/pubmed/cora For multiple datasets combined, connect these abbreviations with '-', and use '.n' to repeat multiple times e.g. arxiv-products-pubmed-cora.3 means using arxiv+products+pubmed+cora, and repeat cora for 3 times
# $4 = batch size default: 16
# $5 = embedding e.g. simteg, sbert, roberta
# training on single GPU
CUDA_VISIBLE_DEVICES=0 ./scripts/train.sh vicuna nc-lp arxiv-products-pubmed-cora.3 16 simteg
# training on multiple GPU
./scripts/train_deepspeed.sh vicuna nc-lp arxiv-products-pubmed-cora.3 4 simteg
We also uploaded four general projectors to huggingface.
Setting | Template | Repo |
---|---|---|
General Model | HO | Runjin/llaga-vicuna-7b-simteg-HO-general_model-2-layer-mlp-projector |
General Model | ND | Runjin/llaga-vicuna-7b-simteg-ND-general_model-2-layer-mlp-projector |
Classification Expert | HO | Runjin/llaga-vicuna-7b-simteg-HO-classification_expert-linear-projector |
Classification Expert | ND | Runjin/llaga-vicuna-7b-simteg-ND-classification_expert-linear-projector |
Step 4: Evaluation
You can evaluate LLaGA with the command:
model_path="/path/to/projector" # local path or huggingface repo
model_base="lmsys/vicuna-7b-v1.5-16k" #meta-llama/Llama-2-7b-hf
mode="v1" # use 'llaga_llama_2' for llama and "v1" for others
dataset="arxiv" #test dataset
task="nc" #test task
emb="simteg"
use_hop=2 # 2 for ND and 4 for HO
sample_size=10
template="ND"
output_path="/path/to/output"
python eval/eval_pretrain.py \
--model_path ${model_path} \
--model_base ${model_base} \
--conv_mode ${mode} \
--dataset ${dataset} \
--pretrained_embedding_type ${emb} \
--use_hop ${use_hop} \
--sample_neighbor_size ${sample_size} \
--answers_file ${output_path} \
--task ${task} \
--cache_dir ../../checkpoint \
--template ${template}
To evaluate your predicted results, please run:
python eval/eval_res.py --dataset ${dataset} --task ${task} --res_path ${output_path}
Citation
@InProceedings{pmlr-v235-chen24bh,
title = {{LL}a{GA}: Large Language and Graph Assistant},
author = {Chen, Runjin and Zhao, Tong and Jaiswal, Ajay Kumar and Shah, Neil and Wang, Zhangyang},
booktitle = {Proceedings of the 41st International Conference on Machine Learning},
pages = {7809--7823},
year = {2024},
editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix},
volume = {235},
series = {Proceedings of Machine Learning Research},
month = {21--27 Jul},
publisher = {PMLR},
pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/chen24bh/chen24bh.pdf},
url = {https://proceedings.mlr.press/v235/chen24bh.html},
}