Awesome
Robust Tracking against Adversarial Attacks
:herb: Robust Tracking against Adversarial Attacks
Shuai Jia, Chao Ma, Yibing Song and Xiaokang Yang
European Conference on Computer Vision (ECCV), 2020
Introduction
<img src="https://github.com/joshuajss/RTAA/blob/master/demo/visualization.png" width='700'/><br/>
Deep convolutional neural networks (CNNs) are vulnerable to adversarial attacks.
- We propose to generate adversarial examples to deteriorate the performance for visual object tracking.
- Conversely, we propose to defend deep trackers against adversarial attacks that eliminate their effect to alleviate performance drops caused by the adversarial attack.
- We choose two typical trackers, DaSiamRPN and RT-MDnet.
Prerequisites
The environment follows the tracker you intend to attack:
- The specific setting and pretrained model for DaSiamPRN can refer to Code_DaSiamRPN
python = 2.7, pytorch = 1.2.0, opencv-python = 4.2.0.32
- The specific setting and pretrained model for RT-MDNet can refer to Code_RT-MDNet
Results
Result for DaSiamRPN on multiple datasets
OTB2015<br>OP / DP | VOT2018<br>A / R / EAO | VOT2016<br>A / R / EAO | UAV123 <br>OP / DP | |
---|---|---|---|---|
DaSiamRPN | 0.658 / 0.886 | 0.585 / 0.272 / 0.380 | 0.622 / 0.214 / 0.418 | 0.592 / 0.791 |
DaSiamRPN+RandAtt | 0.586 / 0.799 | 0.571 / 0.529 / 0.223 | 0.606 / 0.303 / 0.336 | 0.572 / 0.769 |
DaSiamRPN+Att | 0.050 / 0.050 | 0.536 / 1.447 / 0.097 | 0.521 / 1.631 / 0.078 | 0.026 / 0.045 |
DaSiamRPN+Att+Def | 0.473 / 0.639 | 0.579 / 0.674 / 0.195 | 0.581 / 0.722 / 0.211 | 0.465 / 0.639 |
DaSiamRPN+Def | 0.658 / 0.886 | 0.584 / 0.253 / 0.384 | 0.625 / 0.224 / 0.439 | 0.592 / 0.792 |
Result for RT-MDNet on multiple datasets
OTB2015<br>OP / DP | VOT2018<br>A / R / EAO | VOT2016<br>A / R / EAO | UAV123 <br>OP / DP | |
---|---|---|---|---|
RT-MDNet | 0.643 / 0.876 | 0.533 / 0.567 / 0.176 | 0.567 / 0.196 / 0.370 | 0.512 / 0.754 |
RT-MDNet+RandAtt | 0.559 / 0.753 | 0.503 / 0.871 / 0.137 | 0.550 / 0.452 / 0.235 | 0.491 / 0.728 |
RT-MDNet+Att | 0.131 / 0.140 | 0.475 / 1.611 / 0.076 | 0.469 / 0.928 / 0.128 | 0.079 / 0.128 |
RT-MDNet+Att+Def | 0.420 / 0.589 | 0.515 / 1.021 / 0.110 | 0.531 / 0.494 / 0.225 | 0.419 / 0.620 |
RT-MDNet+Def | 0.644 / 0.883 | 0.529 / 0.538 / 0.179 | 0.540 / 0.168 / 0.364 | 0.513 / 0.757 |
:herb: All raw results are available. [Google_drive] [Baidu_Disk] Code: 5ex9
Quick Start
:herb: The code of adversarial attack on DaSiamRPN is released!!
- You should download the OTB2015 dataset in
data
folder. - Please download the pretrained model in Code_DaSiamRPN.
Test the original performance on OTB2015 dataset, please using the follwing command.
cd DaSiamRPN/code
python test_otb.py
Test the adversarial attack performance on OTB2015 dataset, please using the follwing command.
cd DaSiamRPN/code
python test_otb_attack.py
Test the adversarial defense performance on OTB2015 dataset, please using the follwing command.
cd DaSiamRPN/code
python test_otb_defense.py
-v
can be used to visualize the tracking results.
Demo
<img src="https://github.com/joshuajss/RTAA/blob/master/demo/attack_otb100.gif" width='300'/> <img src="https://github.com/joshuajss/RTAA/blob/master/demo/defense_otb100.gif" width='300'/><br/> <img src="https://github.com/joshuajss/RTAA/blob/master/demo/legend.png" width='400'/><br/>
Citation
If any part of our paper and code is helpful to your work, please generously citing:
@inproceedings{jia-eccv20-RTAA,
title={Robust Tracking against Adversarial Attacks},
author={Jia, Shuai and Ma, Chao and Song, Yibing and Yang, Xiaokang},
booktitle={European Conference on Computer Vision},
year={2020}
}
@inproceedings{zhu-eccv18-dasiamrpn,
title={Distractor-aware Siamese Networks for Visual Object Tracking},
author={Zhu, Zheng and Wang, Qiang and Li, Bo and Wu, Wei and Yan, Junjie and Hu, Weiming},
booktitle={European Conference on Computer Vision},
year={2018}
}
@InProceedings{jung-eccv19-rtmdnet,
author = {Jung, Ilchae and Son, Jeany and Baek, Mooyeol and Han, Bohyung},
title = {Real-Time MDNet},
booktitle = {European Conference on Computer Vision (ECCV)},
month = {Sept},
year = {2018}
}
Thank you!
License
Licensed under an MIT license.