Home

Awesome

Robust Tracking against Adversarial Attacks

:herb: Robust Tracking against Adversarial Attacks

Shuai Jia, Chao Ma, Yibing Song and Xiaokang Yang

European Conference on Computer Vision (ECCV), 2020

Introduction

<img src="https://github.com/joshuajss/RTAA/blob/master/demo/visualization.png" width='700'/><br/>

Deep convolutional neural networks (CNNs) are vulnerable to adversarial attacks.

Prerequisites

The environment follows the tracker you intend to attack:

python = 2.7, pytorch = 1.2.0, opencv-python = 4.2.0.32

Results

Result for DaSiamRPN on multiple datasets

OTB2015<br>OP / DPVOT2018<br>A / R / EAOVOT2016<br>A / R / EAOUAV123 <br>OP / DP
DaSiamRPN0.658 / 0.8860.585 / 0.272 / 0.3800.622 / 0.214 / 0.4180.592 / 0.791
DaSiamRPN+RandAtt0.586 / 0.7990.571 / 0.529 / 0.2230.606 / 0.303 / 0.3360.572 / 0.769
DaSiamRPN+Att0.050 / 0.0500.536 / 1.447 / 0.0970.521 / 1.631 / 0.0780.026 / 0.045
DaSiamRPN+Att+Def0.473 / 0.6390.579 / 0.674 / 0.1950.581 / 0.722 / 0.2110.465 / 0.639
DaSiamRPN+Def0.658 / 0.8860.584 / 0.253 / 0.3840.625 / 0.224 / 0.4390.592 / 0.792

Result for RT-MDNet on multiple datasets

OTB2015<br>OP / DPVOT2018<br>A / R / EAOVOT2016<br>A / R / EAOUAV123 <br>OP / DP
RT-MDNet0.643 / 0.8760.533 / 0.567 / 0.1760.567 / 0.196 / 0.3700.512 / 0.754
RT-MDNet+RandAtt0.559 / 0.7530.503 / 0.871 / 0.1370.550 / 0.452 / 0.2350.491 / 0.728
RT-MDNet+Att0.131 / 0.1400.475 / 1.611 / 0.0760.469 / 0.928 / 0.1280.079 / 0.128
RT-MDNet+Att+Def0.420 / 0.5890.515 / 1.021 / 0.1100.531 / 0.494 / 0.2250.419 / 0.620
RT-MDNet+Def0.644 / 0.8830.529 / 0.538 / 0.1790.540 / 0.168 / 0.3640.513 / 0.757

:herb: All raw results are available. [Google_drive] [Baidu_Disk] Code: 5ex9

Quick Start

:herb: The code of adversarial attack on DaSiamRPN is released!!

Test the original performance on OTB2015 dataset, please using the follwing command.

cd DaSiamRPN/code
python test_otb.py

Test the adversarial attack performance on OTB2015 dataset, please using the follwing command.

cd DaSiamRPN/code
python test_otb_attack.py

Test the adversarial defense performance on OTB2015 dataset, please using the follwing command.

cd DaSiamRPN/code
python test_otb_defense.py

-v can be used to visualize the tracking results.

Demo

<img src="https://github.com/joshuajss/RTAA/blob/master/demo/attack_otb100.gif" width='300'/> <img src="https://github.com/joshuajss/RTAA/blob/master/demo/defense_otb100.gif" width='300'/><br/>         <img src="https://github.com/joshuajss/RTAA/blob/master/demo/legend.png" width='400'/><br/>

Citation

If any part of our paper and code is helpful to your work, please generously citing:

@inproceedings{jia-eccv20-RTAA,
  title={Robust Tracking against Adversarial Attacks},
  author={Jia, Shuai and Ma, Chao and Song, Yibing and Yang, Xiaokang},
  booktitle={European Conference on Computer Vision},
  year={2020}
}
@inproceedings{zhu-eccv18-dasiamrpn,
  title={Distractor-aware Siamese Networks for Visual Object Tracking},
  author={Zhu, Zheng and Wang, Qiang and Li, Bo and Wu, Wei and Yan, Junjie and Hu, Weiming},
  booktitle={European Conference on Computer Vision},
  year={2018}
}
@InProceedings{jung-eccv19-rtmdnet,
author = {Jung, Ilchae and Son, Jeany and Baek, Mooyeol and Han, Bohyung},
title = {Real-Time MDNet},
booktitle = {European Conference on Computer Vision (ECCV)},
month = {Sept},
year = {2018}
}

Thank you!

License

Licensed under an MIT license.