Awesome
<!-- README.md is generated from README.Rmd. Please edit that file -->urbnmapr <a href="https://urbaninstitute.github.io/urbnmapr/"><img src="man/figures/hexsticker.png" align="right" height="160"/></a>
The urbnmapr
package provides state and county shapefiles that are
compatible to map with ggplot2
.
Shapefiles include Alaska and Hawaii, transformed to be displayed as insets within the continental United States. There are options to include the territories for both the state and county maps.
This package is heavily inspired by and derived in part from the
fiftystater package by
William Murphy. In contrast, urbnmapr
:
- Uses shapefiles from the US Census Bureau
- Converts the shapefile data to
sf
format - Adds various identifiers for merging
- Includes a county-level shapefile and options to add territories
Stay up-to-date
Sign up here to stay up-to-date with R package releases and R resources from the Urban Institute. We will not share your information and we will not email more than once per month.
Installation
You can install the latest version of urbnmapr
from GitHub:
# install.packages("devtools")
devtools::install_github("UrbanInstitute/urbnmapr")
Usage
Quick maps
The get_urbn_map()
function can be used to call shapefiles. Using the
sf = TRUE
option will load sf
objects. These can be used with
geom_sf()
to create base maps of the continental United States, with
Alaska and Hawaii displayed as insets:
library(tidyverse)
library(urbnmapr)
states_sf <- get_urbn_map("states", sf = TRUE)
states_sf %>%
ggplot(aes()) +
geom_sf(fill = "grey", color = "#ffffff")
<!-- -->
library(tidyverse)
library(urbnmapr)
counties_sf <- get_urbn_map("counties", sf = TRUE)
counties_sf %>%
ggplot(aes()) +
geom_sf(fill = "grey", color = "#ffffff")
<!-- -->
The default projection is US National Atlas Equal Area.
More maps
Maps with US territories can also be called with
get_urbn_map()
.
territories_counties <- get_urbn_map(map = "territories_counties", sf = TRUE)
ggplot() +
geom_sf(territories_counties,
mapping = aes(),
fill = "grey", color = "#ffffff")
<!-- -->
Labels
Labels for states maps can be accessed with get_urbn_labels()
. Only
state labels are custom, so they can be displayed next to smaller
states. Use the function to call the appropriate labels and then label
the map with geom_sf_text()
.
states_sf <- get_urbn_map(map = "states", sf = TRUE)
states_sf %>%
ggplot() +
geom_sf(aes(),
fill = "grey", color = "#ffffff", size = 0.25) +
geom_sf_text(data = get_urbn_labels(map = "states", sf = TRUE),
aes(label = state_abbv),
size = 3)
<!-- -->
Merging Data
The states and counties spatial data include various identifiers to
simplify merging data. The states states
tibble contains state_fips
,
state_abbv
, and state_name
. The counties
tibble contains
county_fips
, state_abbv
, state_fips
, county_name
, and
state_name
.
Continuous data can be mapping on a color scale.
spatial_data <- left_join(get_urbn_map(map = "states", sf = TRUE),
statedata,
by = "state_name")
ggplot() +
geom_sf(spatial_data,
mapping = aes(fill = horate),
color = "#ffffff", size = 0.25) +
labs(fill = "Homeownership rate")
<!-- -->
Categorical data can be mapped on a discrete color scale.
counties_sf <- get_urbn_map(map = "counties", sf = TRUE)
county_groups <- countydata %>%
mutate(cat_var = paste0("Group ",
sample(1:4, nrow(countydata), replace = TRUE)))
household_data <- left_join(counties_sf, county_groups, by = "county_fips")
household_data %>%
ggplot() +
geom_sf(mapping = aes(fill = cat_var),
color = NA, size = 0.05) +
labs(fill = "Categorical variable")
<!-- -->
Styles
library(urbnmapr)
works well with
`library(urbnthemes)
library(urbnthemes)
set_urbn_defaults(style = "map")
## Warning: New theme missing the following elements: axis.ticks.length.x,
## axis.ticks.length.x.top, axis.ticks.length.x.bottom, axis.ticks.length.y,
## axis.ticks.length.y.left, axis.ticks.length.y.right
states_sf <- get_urbn_map(map = "states", sf = TRUE)
states_sf %>%
left_join(statedata, by = "state_name") %>%
ggplot() +
geom_sf(mapping = aes(fill = horate),
color = "#ffffff", size = 0.25) +
scale_fill_gradientn(labels = scales::percent) +
labs(fill = "Homeownership rate") +
coord_sf(datum = NA)
<!-- -->
Map smaller geographies with filter()
. You may need to reproject the
data based on which areas you are mapping.
household_data %>%
filter(state_name == "California") %>%
ggplot() +
geom_sf(mapping = aes(fill = medhhincome),
color = "#ffffff", size = 0.05) +
coord_sf(datum = NA) +
scale_fill_gradientn(labels = scales::dollar) +
labs(fill = "Median household income")
<!-- -->
A discrete color scale can also be used for categorical data.
state_categorical <- left_join(get_urbn_map(map = "states", sf = TRUE),
statedata,
by = "state_name") %>%
mutate(cat_var = paste0("Group ",
sample(1:4, nrow(statedata), replace = TRUE)))
ggplot() +
geom_sf(state_categorical, mapping = aes(fill = cat_var),
color = "#ffffff") +
scale_fill_discrete() +
coord_sf(datum = NA) +
labs(fill = "Categorical variable")
<!-- -->
License
Code released under the GNU General Public License v3.0.
Code of conduct
Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.