Awesome
Easy Begun is Half Done: Spatial-Temporal Graph Modeling with ST-Curriculum Dropout
<p align="center"> <img src="img/framework.png" width="100%" height="50%"> </p>Descriptions
Source code of the AAAI'23: ST-Curriculum Dropout in Spatial-Temporal Graph Modeling
Requirements
Python==3.8
pytorch==1.7.1
torch-summary (>= 1.4.5)
you will get some error if you installed torchsummary, see the details at https://pypi.org/project/torch-summary/. please uninstall torchsummary and run pip install torch-summary to install the new one.
Running
python main.py
Dataset
We provide sample data under data/.
The project structure is organized as follows:
├── data
│ └── METRLA
│ ├── metr-la.h5 # signal observation
│ ├── W_metrla.csv # adj maxtrix
├── img
│ └── framework.png # image of model framework
├── models
│ ├── STGCN.py # STGCN framework
│ ├── Param.py # hyper parameter
├── save
├── main.py
├── README.md
└── utils
├── Metrics.py # evaluation metrics
├── Utils.py
Reference
If you make advantage of the STC-Dropout in your research, please cite the following in your manuscript:
@article{wang2022easy,
title={Easy Begun is Half Done: Spatial-Temporal Graph Modeling with ST-Curriculum Dropout},
author={Wang, Hongjun and Chen, Jiyuan and Pan, Tong and Fan, Zipei and Zhang, Boyuan and Jiang, Renhe and Zhang, Lingyu and Xie, Yi and Wang, Zhongyi and Song, Xuan},
booktitle = {{AAAI}},
publisher = {{AAAI} Press},
year = {2023}
}