Home

Awesome

This project is the code of AAAI 2018 paper When Will You Arrive? Estimating Travel Time Based on Deep Neural Networks.

We provide the complete version of code and part of sample data in Chengdu. You can replace the sample data with your own data easily. See the samples in data/ for more details. The complete data can be downloaded at https://duke.box.com/s/ni5ca8iktneq828fk5cul8afwkvszkdr , which is provided by the following competion http://www.dcjingsai.com/common/cmpt/%E4%BA%A4%E9%80%9A%E7%BA%BF%E8%B7%AF%E9%80%9A%E8%BE%BE%E6%97%B6%E9%97%B4%E9%A2%84%E6%B5%8B_%E8%B5%9B%E4%BD%93%E4%B8%8E%E6%95%B0%E6%8D%AE.html.

Usage:

Model Training

python train.py

Parameters:

Example:

python main.py --task train  --batch_size 10  --result_file ./result/deeptte.res --pooling_method attention --kernel_size 3 --alpha 0.1 --log_file run_log

Model Evaluation

Parameters:

Example:

python main.py --task test --weight_file ./saved_weights/weight --batch_size 10  --result_file ./result/deeptte.res --pooling_method attention --kernel_size 3 --alpha 0.1

How to User Your Own Data

In the data folder we provide some sample data. You can use your own data with the corresponding format as in the data samples. The sampled data contains 1800 trajectories. To make the model performance close to our proposed result, make sure your dataset contains more than 5M trajectories.

Format Instructions

Each sample is a json string. The key contains:

The GPS points in a path should be resampled with nearly equal distance.

Furthermore, repalce the config file according to your own data, including the dist_mean, time_mean, lngs_mean, etc.