Awesome
Multi-Spectral Stereo ($MS^2$) Outdoor Driving Dataset
This is the official github page of the $MS^2$ dataset described in the following paper.
This page provides a dataloader and simple python code for $MS^2$ dataset.
If you want to download the dataset and see the details, please visit the dataset page.
Deep Depth Estimation from Thermal Image
Ukcheol Shin, Jinsun Park, In So Kweon
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023
[Paper] [Dataset page]
Updates
- 2023.03.30: Open Github page.
- 2023.05.30: Release $MS^2$ dataset, dataloader, and demo code.
$MS^2$ Dataset Specification
MS2 dataset provides:
- (Synchronized) Stereo RGB images / Stereo NIR images / Stereo thermal images
- (Synchronized) Stereo LiDAR scans / GPS/IMU navigation data
- Projected depth map (in RGB, NIR, thermal image planes)
- Odometry data (in RGB, NIR, thermal cameras, and LiDAR coordinates)
Usage
- Download the datasets and place them in 'MS2dataset' folder in the following structure:
MS2dataset
├── sync_data
│ ├── <Sequence Name1>
│ ├── <Sequence Name2>
│ ├── ...
│ └── <Sequence NameN>
├── proj_depth
│ ├── <Sequence Name1>
│ ├── <Sequence Name2>
│ ├── ...
│ └── <Sequence NameN>
└── odom
├── <Sequence Name1>
├── <Sequence Name2>
├── ...
└── <Sequence NameN>
- We provide a simple python code (demo.py) along with a dataloader to take a look at the provided dataset. To run the code, you need any version of Pytorch library.
python demo.py --seq_name <Sequence Name> --modality rgb --data_format MonoDepth
python demo.py --seq_name <Sequence Name> --modality nir --data_format StereoMatch
python demo.py --seq_name <Sequence Name> --modality thr --data_format MultiViewImg