Home

Awesome

RoRD

Rotation-Robust Descriptors and Orthographic Views for Local Feature Matching

Project Page | Paper link

Accepted to IROS 2021

<img src="assets/teaser2.jpg" alt="pipeline" width="1000" height="220" />

Evaluation and Datasets

Pretrained Models

Download models from Google Drive (73.9 MB) in the base directory.

Evaluating RoRD

You can evaluate RoRD on demo images or replace it with your custom images.

  1. Dependencies can be installed in a conda or virtualenv (using python 3.6) by running:
    1. pip install -r requirements.txt
  2. python extractMatch.py <rgb_image1> <rgb_image2> --model_file <path to the model file RoRD>
  3. Example:
    python extractMatch.py demo/rgb/rgb1_1.jpg demo/rgb/rgb1_2.jpg --model_file models/rord.pth
  4. This should give you output like this:

RoRD

<img src="assets/rord_extract.jpg" alt="pipeline" width="600" height="220" />

SIFT

<img src="assets/sift_extract.jpg" alt="pipeline" width="600" height="220" />

DiverseView Dataset

Download dataset from Google Drive (97.8 MB) in the base directory (only needed if you want to evaluate on DiverseView Dataset).

Evaluation on DiverseView Dataset

The DiverseView Dataset is a custom dataset consisting of 4 scenes with images having high-angle camera rotations and viewpoint changes.

  1. Pose estimation on single image pair of DiverseView dataset:
    1. cd demo
    2. python register.py --rgb1 <path to rgb image 1> --rgb2 <path to rgb image 2> --depth1 <path to depth image 1> --depth2 <path to depth image 2> --model_rord <path to the model file RoRD>
    3. Example:
      python register.py --rgb1 rgb/rgb2_1.jpg --rgb2 rgb/rgb2_2.jpg --depth1 depth/depth2_1.png --depth2 depth/depth2_2.png --model_rord ../models/rord.pth
    4. This should give you output like this:

RoRD matches in perspective view

<img src="assets/register_persp.jpg" alt="pipeline" width="600" height="220" />

RoRD matches in orthographic view

<img src="assets/register_ortho.jpg" alt="pipeline" width="600" height="220" />
  1. To visualize the registered point cloud, use --viz3d command:
    1. python register.py --rgb1 rgb/rgb2_1.jpg --rgb2 rgb/rgb2_2.jpg --depth1 depth/depth2_1.png --depth2 depth/depth2_2.png --model_rord ../models/rord.pth --viz3d

PointCloud registration using correspondences

<img src="assets/register_pointcloud.jpg" alt="pipeline" width="600" height="400" />
  1. Pose estimation on a sequence of DiverseView dataset:

    1. cd evaluation/DiverseView/
    2. python evalRT.py --dataset <path to DiverseView dataset> --sequence <sequence name> --model_rord <path to RoRD model> --output_dir <name of output dir>
    3. Example:
      1. python evalRT.py --dataset /path/to/preprocessed/ --sequence data1 --model_rord ../../models/rord.pth --output_dir out
    4. This would generate out folder containing predicted transformations and matching results in out/vis folder, containing images like below:

    RoRD

    <img src="assets/rord_evalRT.jpg" alt="pipeline" width="600" height="220" />
    1. SIFT Matching:
      1. python evalRT.py --dataset /path/to/preprocessed/ --sequence data1 --sift --output_dir out_sift
    2. Matching on perspective view:
      1. python evalRT.py --dataset /path/to/preprocessed/ --sequence data1 --model_rord ../../models/rord.pth --output_dir out_persp --persp

Training RoRD on PhotoTourism Images

  1. Training using rotation homographies with initialization from D2Net weights (Download base models as mentioned in Pretrained Models).

  2. Download branderburg_gate dataset that is used in the configs/train_scenes_small.txt from here(5.3 Gb) in phototourism folder.

  3. Folder stucture should be:

    phototourism/  
    ___ brandenburg_gate  
    ___ ___ dense  
    ___ ___	___ images  
    ___ ___	___ stereo  
    ___ ___	___ sparse  
    
  4. python trainPT_ipr.py --dataset_path <path_to_phototourism_folder> --init_model models/d2net.pth --plot

TO-DO

Credits

Our base model is borrowed from D2-Net.

BibTex

If you use this code in your project, please cite the following paper:

@inproceedings{parihar2021rord,
  title={RoRD: Rotation-Robust Descriptors and Orthographic Views for Local Feature Matching},
  author={Parihar, Udit Singh and Gujarathi, Aniket and Mehta, Kinal and Tourani, Satyajit and Garg, Sourav and Milford, Michael and Krishna, K Madhava},
  booktitle={2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
  pages={1593--1600},
  organization={IEEE}
}