Awesome
DMIST-Benchmark
Dense Moving Infrared Small Target Detection
The DMIST benchmark datasets and baseline model implementation of the TGRS 2024 paper Towards Dense Moving Infrared Small Target Detection: New Datasets and Baseline
<img src="/readme/vis.png" width="1000px">Benchmark Datasets (bounding box-based)
-
We synthesize two dense moving infrared small target datasets DMIST-60 and DMIST-100 on DAUB.
-
Datasets are available at
DMIST
Baidu/Google andIRDST
Baidu(code: t2ti). Or you can downloadIRDST
directly from the website. -
You need to reorganize these datasets in a format similar to the
DMIST_train.txt
andDMIST_val.txt
files we provided (txt files
are used in training). We provide thetxt files
for DMIST and IRDST. For example:
train_annotation_path = '/home/LASNet/DMIST_train.txt'
val_annotation_path = '/home/LASNet/DMIST_60_val.txt'
- Or you can generate a new
txt file
based on the path of your datasets.Text files
(e.g.,DMIST_60_val.txt
) can be generated fromjson files
(e.g.,60_coco_val.json
). We also provide alljson files
forDMIST
Baidu/Google andIRDST
Baidu.
python utils_coco/coco_to_txt.py
- The folder structure should look like this:
DMIST
├─coco_train.json
├─60_coco_val.json
├─100_coco_val.json
├─images
│ ├─train
│ │ ├─data5
│ │ │ ├─0.bmp
│ │ │ ├─0.txt
│ │ │ ├─ ...
│ │ │ ├─2999.bmp
│ │ │ ├─2999.txt
│ │ │ ├─ ...
│ │ ├─ ...
│ ├─test60
│ │ ├─data6
│ │ │ ├─0.bmp
│ │ │ ├─0.txt
│ │ │ ├─ ...
│ │ │ ├─398.bmp
│ │ │ ├─398.txt
│ │ │ ├─ ...
│ │ ├─ ...
│ ├─test100
│ │ ├─ ...
Prerequisite
- python==3.10.11
- pytorch==1.12.0
- torchvision==0.13.0
- numpy==1.24.3
- opencv-python==4.7.0.72
- pillow==9.5.0
- scipy==1.10.1
- Tested on Ubuntu 20.04, with CUDA 11.3, and 1x NVIDIA 3090.
Usage of baseline LASNet
Train
<!-- - Note: Please use different `dataloaders` for different datasets. For example, if you want to use IRDST dataset for training, please change the `dataloader` in `train.py` to: `from utils.dataloader_for_IRDST import seqDataset, dataset_collate`. -->CUDA_VISIBLE_DEVICES=0 python train_DMIST.py
Test
- Usually
model_best.pth
is not necessarily the best model. The best model may have a lower val_loss or a higher AP50 during verification.
"model_path": '/home/LASNet/logs/model.pth'
- You need to change the path of the
json file
of test sets. For example:
#Use DMIST-100 dataset for test.
cocoGt_path = '/home/public/DMIST/100_coco_val.json'
dataset_img_path = '/home/public/DMIST/'
python test_DMIST.py
Visulization
- We support
video
andsingle-frame image
prediction.
# mode = "video" #Predict a sequence
mode = "predict" #Predict a single-frame image
python predict.py
Results
- We optimize old codes and retrain LASNet, achieving slightly better performance results than those reported in our paper.
- PR curve on DMIST and IRDST datasets in the paper.
- We provide the results on DMIST-60, DMIST-100 and IRDST, and you can plot them using Python.
Contact
If any questions, kindly contact with Shengjia Chen via e-mail: csj_uestc@126.com.
References
- S. Chen, L. Ji, J. Zhu, M. Ye and X. Yao, "SSTNet: Sliced Spatio-Temporal Network With Cross-Slice ConvLSTM for Moving Infrared Dim-Small Target Detection," in IEEE Transactions on Geoscience and Remote Sensing, vol. 62, pp. 1-12, 2024, Art no. 5000912, doi: 10.1109/TGRS.2024.3350024.
- B. Hui et al., “A dataset for infrared image dim-small aircraft target detection and tracking under ground/air background,” Sci. Data Bank, CSTR 31253.11.sciencedb.902, Oct. 2019.
Citation
If you find this repo useful, please cite our paper.
@ARTICLE{chen2024dmist,
author={Chen, Shengjia and Ji, Luping and Zhu, Sicheng and Ye, Mao and Ren, Haohao and Sang, Yongsheng},
journal={IEEE Transactions on Geoscience and Remote Sensing},
title={Toward Dense Moving Infrared Small Target Detection: New Datasets and Baseline},
year={2024},
volume={62},
pages={1-13},
doi={10.1109/TGRS.2024.3443280}}