Home

Awesome

Fast-SCNN: Fast Semantic Segmentation Network

A PyTorch implementation of Fast-SCNN: Fast Semantic Segmentation Network from the paper by Rudra PK Poudel, Stephan Liwicki.

<p align="center"><img width="100%" src="./png/Fast-SCNN.png" /></p>

Table of Contents

Installation

Datasets

Training-Fast-SCNN

python train.py --model fast_scnn --dataset citys

Evaluation

To evaluate a trained network:

python eval.py

Demo

Running a demo:

python demo.py --model fast_scnn --input-pic './png/berlin_000000_000019_leftImg8bit.png'

Results

MethodDatasetcrop_sizemIoUpixAcc
Fast-SCNN(paper)cityscapes
Fast-SCNN(ours)cityscapes76854.84%92.37%

Note: The result based on crop_size=768, which is different with paper.

<img src="./png/frankfurt_000001_058914_leftImg8bit.png" width="280" /><img src="./png/frankfurt_000001_058914_gtFine_color.png" width="280" /><img src="./png/frankfurt_000001_058914_seg.png" width="280" />           (a) test image            (b) ground truth           (c) predicted result

TODO

Authors

References