Home

Awesome

<a id="banner"></a>

<p align="center"> <img src="https://public.trafficguard.ai/sophia/banner.png" alt="Sophia banner"/> </p> <p align="center"> <em>The open TypeScript platform for autonomous AI agents and LLM based workflows </em><br/> <small>The Ancient Greek word <em><b>sophía (σοφία)</b></em> variously translates to "clever, skillful, intelligent, wise"</small> </p>

Documentation site

Home | Setup | Observability | Function calling | Autonomous AI Agent | AI Software Engineer | AI Code reviews | Tools/Integrations | Roadmap


Features | UI Examples | Code examples | Contributing

Sophia is a full-featured platform for developing and running agents, LLM based workflows and chatbots.

Included are capable software engineering agents, which have assisted building the platform.

Key features

Autonomous agents

More details at the Autonomous agent docs

Software developer agents

More details at the Software developer agents docs.

Flexible run/deploy options

UI Examples

List agents

List agents

New Agent

New Agent UI

Agent error handling

Feedback requested

Agent LLM calls

Agent LLM calls

Sample trace (Google Cloud)

Sample trace in Google Cloud

Human in the loop notification

<img src="https://public.trafficguard.ai/sophia/feedback.png" width="702">

Code review configuration

Code review configuration

AI Chat

AI chat

User profile

Profile Profile

Default values can also be set from environment variables.

Code Examples

Sophia vs LangChain

Sophia doesn't use LangChain, for many reasons that you can read online

The scope of the Sophia platform covers functionality found in LangChain and LangSmith.

Let's compare the LangChain document example for Multiple Chains to the equivalent Sophia implementation.

LangChain

import { PromptTemplate } from "@langchain/core/prompts";
import { RunnableSequence } from "@langchain/core/runnables";
import { StringOutputParser } from "@langchain/core/output_parsers";
import { ChatAnthropic } from "@langchain/anthropic";

const prompt1 = PromptTemplate.fromTemplate(
  `What is the city {person} is from? Only respond with the name of the city.`
);
const prompt2 = PromptTemplate.fromTemplate(
  `What country is the city {city} in? Respond in {language}.`
);

const model = new ChatAnthropic({});

const chain = prompt1.pipe(model).pipe(new StringOutputParser());

const combinedChain = RunnableSequence.from([
  {
    city: chain,
    language: (input) => input.language,
  },
  prompt2,
  model,
  new StringOutputParser(),
]);

const result = await combinedChain.invoke({
  person: "Obama",
  language: "German",
});

console.log(result);

Sophia

import { runAgentWorkflow } from '#agent/agentWorkflowRunner';
import { anthropicLLMs } from '#llms/anthropic'

const cityFromPerson = (person: string) => `What is the city ${person} is from? Only respond with the name of the city.`;
const countryFromCity = (city: string, language: string) => `What country is the city ${city} in? Respond in ${language}.`;

runAgentWorkflow({ llms: anthropicLLMs() }, async () => {
  const city = await llms().easy.generateText(cityFromPerson('Obama'));
  const country = await llms().easy.generateText(countryFromCity(city, 'German'));

  console.log(country);
});

The Sophia code also has the advantage of static typing with the prompt arguments, enabling you to refactor with ease. Using simple control flow allows easy debugging with breakpoints/logging.

To run a fully autonomous agent:

startAgent({
  agentName: 'Create ollama',
  initialPrompt: 'Research how to use ollama using node.js and create a new implementation under the llm folder. Look at a couple of the other files in that folder for the style which must be followed',
  functions: [FileSystem, Perplexity, CodeEditinAgent],
  llms,
});

Automated LLM function schemas

LLM function calling schema are automatically generated by having the @func decorator on class methods, avoiding the definition duplication using zod or JSON.

@funcClass(__filename)
export class Jira {
    instance: AxiosInstance | undefined;
    
    /**
     * Gets the description of a JIRA issue
     * @param {string} issueId - the issue id (e.g. XYZ-123)
     * @returns {Promise<string>} the issue description
     */
    @func()
    async getJiraDescription(issueId: string): Promise<string> {
        if (!issueId) throw new Error('issueId is required');
        const response = await this.axios().get(`issue/${issueId}`);
        return response.data.fields.description;
    }
}

Contributing

We warmly welcome contributions to the project through issues, pull requests or discussions