Home

Awesome

<div align="center"> <br><br> <img alt="Torch Spatiotemporal" src="https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/tsl_logo_text.svg" width="85%"/> <h3>Neural spatiotemporal forecasting with PyTorch</h3> <hr> <p> <a href='https://pypi.org/project/torch-spatiotemporal/'><img alt="PyPI" src="https://img.shields.io/pypi/v/torch-spatiotemporal"></a> <img alt="PyPI - Python Version" src="https://img.shields.io/badge/python-%3E%3D3.8-blue"> <!-- img alt="PyPI - Python Version" src="https://img.shields.io/pypi/pyversions/torch-spatiotemporal" --> <img alt="Total downloads" src="https://static.pepy.tech/badge/torch-spatiotemporal"> <a href='https://torch-spatiotemporal.readthedocs.io/en/latest/?badge=latest'><img src='https://readthedocs.org/projects/torch-spatiotemporal/badge/?version=latest' alt='Documentation Status' /></a> </p> <p> 🚀 <a href="https://torch-spatiotemporal.readthedocs.io/en/latest/usage/quickstart.html">Getting Started</a> - 📚 <a href="https://torch-spatiotemporal.readthedocs.io/en/latest/">Documentation</a> - 💻 <a href="https://torch-spatiotemporal.readthedocs.io/en/latest/notebooks/a_gentle_introduction_to_tsl.html">Introductory notebook</a> </p> </div> <p><img src="https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/tsl_logo.svg" width="25px" align="center"/> <b>tsl</b> <em>(Torch Spatiotemporal)</em> is a library built to accelerate research on neural spatiotemporal data processing methods, with a focus on Graph Neural Networks.</p> <p>Built upon popular libraries such as <img src="https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/logos/pytorch.svg" width="20px" align="center"/> <a href="https://pytorch.org"><b>PyTorch</b></a>, <img src="https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/logos/pyg.svg" width="20px" align="center"/> <a href="https://pyg.org">PyG</a> (PyTorch Geometric), and <img src="https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/logos/lightning.svg" width="20px" align="center"/> <a href="https://www.pytorchlightning.ai/">PyTorch Lightning</a>, <img src="https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/tsl_logo.svg" width="25px" align="center"/> tsl provides a unified and user-friendly framework for efficient neural spatiotemporal data processing, that goes from data preprocessing to model prototyping.</p>

Features

Getting Started

Before you start using <img src="https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/tsl_logo.svg" width="25px" align="center"/> tsl, please review the <a href="https://torch-spatiotemporal.readthedocs.io/en/latest/">documentation</a> to get an understanding of the library and its capabilities.

You can also explore the examples provided in the examples directory to see how train deep learning models working with spatiotemporal data.

Installation

Before installing <img src="https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/tsl_logo.svg" width="25px" align="center"/> tsl, make sure you have installed <img src="https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/logos/pytorch.svg" width="20px" align="center"/> <a href="https://pytorch.org">PyTorch</a> (>=1.9.0) and <img src="https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/logos/pyg.svg" width="20px" align="center"/> <a href="https://pyg.org">PyG</a> (>=2.0.3) in your virtual environment (see PyG installation guidelines). <img src="https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/tsl_logo.svg" width="25px" align="center"/> tsl is available for Python>=3.8. We recommend installation from github to be up-to-date with the latest version:

pip install git+https://github.com/TorchSpatiotemporal/tsl.git

Alternatively, you can install the library from the pypi repository:

pip install torch-spatiotemporal

To avoid dependencies issues, we recommend using Anaconda and the provided environment configuration by running the command:

conda env create -f conda_env.yml

Tutorial

The best way to start using <img src="https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/tsl_logo.svg" width="25px" align="center"/> tsl is by following the tutorial notebook in examples/notebooks/a_gentle_introduction_to_tsl.ipynb.

Documentation

Visit the documentation to learn more about the library, including detailed API references, examples, and tutorials.

The documentation is hosted on readthedocs. For local access, you can build it from the docs directory.

Contributing

Contributions are welcome! For major changes or new features, please open an issue first to discuss your ideas. See the Contributing guidelines for more details on how to get involved. Help us build a better <img src="https://raw.githubusercontent.com/TorchSpatiotemporal/tsl/main/docs/source/_static/img/tsl_logo.svg" width="25px" align="center"/> tsl!

Thanks to all contributors! 🧡

<a href="https://github.com/TorchSpatiotemporal/tsl/graphs/contributors"> <img src="https://contrib.rocks/image?repo=TorchSpatiotemporal/tsl" /> </a>

Citing

If you use Torch Spatiotemporal for your research, please consider citing the library

@software{Cini_Torch_Spatiotemporal_2022,
    author = {Cini, Andrea and Marisca, Ivan},
    license = {MIT},
    month = {3},
    title = {{Torch Spatiotemporal}},
    url = {https://github.com/TorchSpatiotemporal/tsl},
    year = {2022}
}

By Andrea Cini and Ivan Marisca.

License

This project is licensed under the terms of the MIT license. See the LICENSE file for details.