Home

Awesome

MemSeg

Unofficial re-implementation for MemSeg: A semi-supervised method for image surface defect detection using differences and commonalities

Environments

einops==0.5.0
timm==0.5.4
wandb==0.12.17
omegaconf
imgaug==0.4.0

Process

1. Anomaly Simulation Strategy

<p align='center'> <img width='700' src='https://user-images.githubusercontent.com/37654013/198960273-ba763f40-6b30-42e3-ab2c-a8e632df63e9.png'> </p>

2. Model Process

<p align='center'> <img width='1500' src='https://user-images.githubusercontent.com/37654013/198960086-fdbf39df-f680-4510-b94b-48341836f960.png'> </p>

Run

Example

python main.py configs=configs.yaml DATASET.target=bottle

Demo

voila "[demo] model inference.ipynb" --port ${port} --Voila.ip ${ip}

Results

targetAUROC-imageAUROC-pixelAUPRO-pixel
leather10098.8399.09
pill97.0598.2997.96
carpet99.1297.5497.02
hazelnut10097.7899
tile99.8699.3898.81
cable92.582.387.31
toothbrush10099.2898.56
transistor96.576.2986.06
zipper99.9597.9497.26
metal_nut99.4688.4895
grid99.8398.3798.53
bottle10098.7998.36
capsule95.4198.4397.73
screw94.8695.0894
wood10097.5497.62
Average98.394.9696.15

Citation

@article{DBLP:journals/corr/abs-2205-00908,
  author    = {Minghui Yang and
               Peng Wu and
               Jing Liu and
               Hui Feng},
  title     = {MemSeg: {A} semi-supervised method for image surface defect detection
               using differences and commonalities},
  journal   = {CoRR},
  volume    = {abs/2205.00908},
  year      = {2022},
  url       = {https://doi.org/10.48550/arXiv.2205.00908},
  doi       = {10.48550/arXiv.2205.00908},
  eprinttype = {arXiv},
  eprint    = {2205.00908},
  timestamp = {Tue, 03 May 2022 15:52:06 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2205-00908.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}