Home

Awesome

<p align="center"> <h1 align="center">RotationDrag: Point-based Image Editing with Rotated Diffusion Features</h1> <p align="center"> <strong>Minxing Luo</strong>    <strong>Wentao Cheng</strong>    <strong>Jian Yang</strong> </p> <br> <div align="center"> <img src="./release-doc/asset/counterfeit-1.png", width="700"> <img src="./release-doc/asset/counterfeit-2.png", width="700"> <img src="./release-doc/asset/majix_realistic.png", width="700"> </div> <!--- <div align="center"> <img src="./release-doc/asset/github_video.gif", width="700"> </div> <p align="center"> <a href="https://arxiv.org/abs/2306.14435"><img alt='arXiv' src="https://img.shields.io/badge/arXiv-2306.14435-b31b1b.svg"></a> <a href="https://yujun-shi.github.io/projects/dragdiffusion.html"><img alt='page' src="https://img.shields.io/badge/Project-Website-orange"></a> <a href="https://twitter.com/YujunPeiyangShi"><img alt='Twitter' src="https://img.shields.io/twitter/follow/YujunPeiyangShi?label=%40YujunPeiyangShi"></a> </p> <br> ---> </p> <p align="center"> <a href="https://arxiv.org/abs/2401.06442"><img alt='arXiv' src="https://img.shields.io/badge/arXiv-2401.06442-b31b1b.svg"></a> </p>

Disclaimer

This is a research project, NOT a commercial product.

Installation

It is recommended to run our code on a Nvidia GPU with a linux system. We have not yet tested on other configurations. Currently, it requires around 14 GB GPU memory to run our method.

To install the required libraries, simply run the following command:

conda env create -f environment.yaml
conda activate rotdrag

Run RotationDrag

To start with, in command line, run the following to start the gradio user interface:

python3 rot_ui.py

Basically, it consists of the following steps:

  1. train a LoRA
  1. do "drag" editing

Run diffusion version of Freedrag in our implementation

To start with, in command line, run the following to start the gradio user interface:

python3 drag_ui.py

The following process is the same as RotationDrag.

Acknowledgement

This work is inspired by the amazing DragDiffusion, and the code is largely borrowed from it. A huge shout-out to all the amazing open source diffusion models and libraries.