Awesome
[ECCV 2024] Match-Stereo-Videos: Bidirectional Alignment for Consistent Dynamic Stereo Matching.
Junpeng Jing, Ye Mao, Krystian Mikolajczyk
Updated
The extension of this work is [BiDAVideo
]
Dataset
Download the following datasets and put in ./data/datasets
:
Download the following dataset and link to the project ln -s ./dynamic_replica ./bidastereo/
:
Installation
Installation of BiDAStereo with PyTorch3D, PyTorch 1.12.1 & cuda 11.3
Setup the root for all source files:
git clone https://github.com/TomTomTommi/BiDAStereo
cd bidastereo
export PYTHONPATH=`(cd ../ && pwd)`:`pwd`:$PYTHONPATH
Create a conda env:
conda create -n bidastereo python=3.8
conda activate bidastereo
Install requirements
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch
pip install "git+https://github.com/facebookresearch/pytorch3d.git@stable"
pip install -r requirements.txt
Evaluation
To download the checkpoints, click the links below. Copy the checkpoints to ./bidastereo/checkpoints/
.
- BiDAStereo trained on SceneFlow
- BiDAStereo trained on SceneFlow and Dynamic Replica
To evaluate BiDAStereo:
sh evaluate_bidastereo.sh
sh evaluate_real.sh
The results are evaluated on an A6000 48GB GPU.
Evaluation on Dynamic Replica requires a 32GB GPU. If you don't have enough GPU memory, you can modify kernel_size
from 20 to 10.
Training
Training requires 8 V100 32GB GPUs or 4 A100 80GB GPUs. You can decrease image_size
and / or sample_len
if you don't have enough GPU memory.
sh train_bidastereo.sh
Citing BiDAStereo
If you use BiDAStereo in your research, please use the following BibTeX entry.
@article{jing2024matchstereovideos,
title={Match-Stereo-Videos: Bidirectional Alignment for Consistent Dynamic Stereo Matching},
author={Junpeng Jing and Ye Mao and Krystian Mikolajczyk},
year={2024},
eprint={2403.10755},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
Acknowledgement
In this project, we use parts of public codes and thank the authors for their contribution in: