Awesome
DEADiff: An Efficient Stylization Diffusion Model with Disentangled Representations (CVPR 2024)
<div align="center"><a href='https://arxiv.org/abs/2403.06951'><img src='https://img.shields.io/badge/arXiv-2403.06951-b31b1b.svg'></a> <a href='https://tianhao-qi.github.io/DEADiff/'><img src='https://img.shields.io/badge/Project-Page-Green'></a>
Tianhao Qi*, Shancheng Fang, Yanze Wu✝, Hongtao Xie✉, Jiawei Liu, <br>Lang Chen, Qian He, Yongdong Zhang <br><br> (*Works done during the internship at ByteDance, ✝Project Lead, ✉Corresponding author)
From University of Science and Technology of China and ByteDance.
</div>🔆 Introduction
TL;DR: We propose DEADiff, a generic method facilitating the synthesis of novel images that embody the style of a given reference image and adhere to text prompts. <br>
⭐⭐ Stylized Text-to-Image Generation.
<div align="center"> <img src=docs/showcase_img.png> <p>Stylized text-to-image results. Resolution: 512 x 512. (Compressed)</p> </div>📝 Changelog
- [2024.4.3]: 🔥🔥 Release the inference code and pretrained checkpoint.
- [2024.3.5]: 🔥🔥 Release the project page.
⏳ TODO
- Release the inference code.
- Release training data.
⚙️ Setup
conda create -n deadiff python=3.9.2
conda activate deadiff
conda install pytorch==2.0.0 torchvision==0.15.0 torchaudio==2.0.0 pytorch-cuda=11.8 -c pytorch -c nvidia
pip install git+https://github.com/salesforce/LAVIS.git@20230801-blip-diffusion-edit
pip install -r requirements.txt
pip install -e .
💫 Inference
- Download the pretrained model from Hugging Face and put it under ./pretrained/.
- Run the commands in terminal.
python3 scripts/app.py
The Gradio app allows you to transfer style from the reference image. Just try it for more details.
Prompt: "A curly-haired boy"
Prompt: "A robot"
Prompt: "A motorcycle"
📢 Disclaimer
We develop this repository for RESEARCH purposes, so it can only be used for personal/research/non-commercial purposes.
✈️ Citation
@article{qi2024deadiff,
title={DEADiff: An Efficient Stylization Diffusion Model with Disentangled Representations},
author={Qi, Tianhao and Fang, Shancheng and Wu, Yanze and Xie, Hongtao and Liu, Jiawei and Chen, Lang and He, Qian and Zhang, Yongdong},
journal={arXiv preprint arXiv:2403.06951},
year={2024}
}
📭 Contact
If your have any comments or questions, feel free to contact qth@mail.ustc.edu.cn