Home

Awesome

<h2 align="center"> <img src='./assets/bench2drive.jpg'> </h2> <h2 align="center"> NeurIPS 2024 Datasets and Benchmarks Track </h2> <h2 align="center"> <a href="https://thinklab-sjtu.github.io/Bench2Drive/">Website</a> | <a href="https://huggingface.co/datasets/rethinklab/Bench2Drive">Huggingface</a> | <a href="https://arxiv.org/abs/2406.03877">arXiv</a> | <a href="https://github.com/Thinklab-SJTU/Bench2DriveZoo">Model</a> | <a href="https://discord.gg/uZuU3JXVNV">Discord</a> </h2>

overview

<h2 align="center"> What can Think2Drive + Bench2Drive provide ? <b>Please click to view the video.</b> <br> <b>&#x2193;&#x2193;&#x2193;</b> </h2>

Bench2Drive

Table of Contents: <a name="high"></a>

  1. News
  2. Dataset
  3. Benchmark
  4. License
  5. Citation

News <a name="news"></a>

Dataset <a name="dataset"></a>

SubsetHugging Face<img src="./assets/hf-logo.png" alt="Hugging Face" width="18"/>Baidu Cloud<img src="https://nd-static.bdstatic.com/m-static/v20-main/favicon-main.ico" alt="Baidu Yun" width="18"/>Approx. SizeFile List
MiniDownload script-4GMini Json File
BaseHugging Face LinkBaidu Cloud Link400GBase Json File
FullFull HF Link - 9888 files/Sup HF Link - 3814 file-4TFull/Sup Json File

Note that the Mini Set is 10 representative scenes. You may download them by manually select file names from the Base set.

Use the command line: huggingface-cli download --repo-type dataset --resume-download rethinklab/Bench2Drive --local-dir Bench2Drive-Base to download from hugginface. User may consider mirror site if Huggingface is blocked. Use BaiduPCS-Go to download from Baidu Cloud. Both command lines are resumable.

Student Model Code (with Think2Drive as Teacher Model)

Setup

Eval Tools

Deal with CARLA

Benchmark <a name="benchmark"></a>

License <a name="license"></a>

All assets and code are under the CC-BY-NC-ND unless specified otherwise.

Citation <a name="citation"></a>

Please consider citing our papers if the project helps your research with the following BibTex:

@inproceedings{jia2024bench,
  title={Bench2Drive: Towards Multi-Ability Benchmarking of Closed-Loop End-To-End Autonomous Driving},
  author={Xiaosong Jia and Zhenjie Yang and Qifeng Li and Zhiyuan Zhang and Junchi Yan},
  booktitle={NeurIPS 2024 Datasets and Benchmarks Track},
  year={2024}
}

@inproceedings{li2024think,
  title={Think2Drive: Efficient Reinforcement Learning by Thinking in Latent World Model for Quasi-Realistic Autonomous Driving (in CARLA-v2)},
  author={Qifeng Li and Xiaosong Jia and Shaobo Wang and Junchi Yan},
  booktitle={ECCV},
  year={2024}
}