Home

Awesome

Monk - A computer vision toolkit for everyone Tweet

Version Build_Status

<br />

Why use Monk

<br /> <br />

Create real-world Image Classification applications

<table> <tr> <td>Medical Domain</td> <td>Fashion Domain</td> <td>Autonomous Vehicles Domain</td> </tr> <tr> <td><img src="https://github.com/abhi-kumar/monk_cls_demos/blob/master/cls-chest-xray-pneumonia-demo.gif" width=320 height=240></td> <td><img src="https://github.com/abhi-kumar/monk_cls_demos/blob/master/cls-apparel-demo.gif" width=320 height=240></td> <td><img src="https://github.com/abhi-kumar/monk_cls_demos/blob/master/cls-distracted-driver-demo.gif" width=320 height=240></td> </tr> <tr> <td>Agriculture Domain</td> <td>Wildlife Domain</td> <td>Retail Domain</td> </tr> <tr> <td><img src="https://github.com/abhi-kumar/monk_cls_demos/blob/master/cls-rice-leaf-disease-demo.gif" width=320 height=240></td> <td><img src="https://github.com/abhi-kumar/monk_cls_demos/blob/master/cls-oregon-wildlife-species-demo.gif" width=320 height=240></td> <td><img src="https://github.com/abhi-kumar/monk_cls_demos/blob/master/cls-groceries-demo.gif" width=320 height=240></td> </tr> <tr> <td>Satellite Domain</td> <td>Healthcare Domain</td> <td>Activity Analysis Domain</td> </tr> <td><img src="https://github.com/abhi-kumar/monk_cls_demos/blob/master/cls-land-usage-demo.gif" width=320 height=240></td> <td><img src="https://github.com/abhi-kumar/monk_cls_demos/blob/master/cls-mask-demo.gif" width=320 height=240></td> <td><img src="https://github.com/abhi-kumar/monk_cls_demos/blob/master/cls-yoga82-demo.gif" width=320 height=240></td> </table>

...... For more check out the Application Model Zoo!!!!

<br /> <br />

How does Monk make image classification easy

<br /> <br />

For whom this library is built

<br /> <br />

Table of Contents

<br /> <br /> <br />

<a id="1"></a>

Sample Showcase - Quick Mode

Create an image classifier.

#Create an experiment
ptf.Prototype("sample-project-1", "sample-experiment-1")

#Load Data
ptf.Default(dataset_path="sample_dataset/", 
             model_name="resnet18", 
             num_epochs=2)
# Train
ptf.Train()

Inference

predictions = ptf.Infer(img_name="sample.png", return_raw=True);

Compare Experiments

#Create comparison project
ctf.Comparison("Sample-Comparison-1");

#Add all your experiments
ctf.Add_Experiment("sample-project-1", "sample-experiment-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-2");
   
# Generate statistics
ctf.Generate_Statistics();
<br /> <br /> <br />

<a id="2"></a>

Installation

For More Installation instructions visit: Link

<br /> <br /> <br />

<a id="3"></a>

Study Roadmaps

<br /> <br /> <br />

<a id="4"></a>

Documentation

<br /> <br /> <br />

<a id="5"></a>

TODO-2020

Features

General

Backend Support

External Libraries

<br /> <br />

Connect with the project contributors

<br /> <br />

Copyright

Copyright 2019 onwards, Tessellate Imaging Private Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this project's files except in compliance with the License. A copy of the License is provided in the LICENSE file in this repository.