Home

Awesome

Monk - A computer vision toolkit for everyone Tweet Open Source Love

Monk Object Detection - A low code wrapper over state-of-the-art deep learning algorithms

<br />

Why use Monk

<br /> <br />

Create real-world Object Detection applications

<table> <tr> <td>Wheat detection in field</td> <td>Detection in underwater imagery</td> <td>Trash Detection</td> </tr> <tr> <td><img src="https://github.com/abhi-kumar/monk_det_demos/blob/master/wheat-detection-demo.gif" width=320 height=240></td> <td><img src="https://github.com/abhi-kumar/monk_det_demos/blob/master/sea_tutrle_demo.gif" width=320 height=240></td> <td><img src="https://github.com/abhi-kumar/monk_det_demos/blob/master/trash.gif" width=320 height=240></td> </tr> <tr> <td>Object detection in bad lighting</td> <td>Tiger detection in wild</td> <td>Person detection in infrared imagery</td> </tr> <tr> <td><img src="https://github.com/abhi-kumar/monk_det_demos/blob/master/obj-det-in-bad-light.gif" width=320 height=240></td> <td><img src="https://github.com/abhi-kumar/monk_det_demos/blob/master/tiger.gif" width=320 height=240></td> <td><img src="https://github.com/abhi-kumar/monk_det_demos/blob/master/ir-person-det.gif" width=320 height=240></td> </tr> </table>

For more such tutorials visit Application Model Zoo

<br /> <br />

Create real-world Image Segmentation applications

<table> <tr> <td>Road Segmentation in satellite imagery</td> <td>Ultrasound nerve segmentation</td> </tr> <tr> <td><img src="https://github.com/abhi-kumar/monk_det_demos/blob/master/satellite-road-segmentation.gif" width=640 height=240></td> <td><img src="https://github.com/abhi-kumar/monk_det_demos/blob/master/ultrasound-nerve-image-segmentat.gif" width=320 height=240></td> </tr> </table>

For more such tutorials visit Application Model Zoo

<br /> <br />

Other applications

<table> <tr> <td>Face Detection</td> <td>Pose Estimation</td> <td>Activity Recognition</td> </tr> <tr> <td><img src="https://github.com/abhi-kumar/monk_det_demos/blob/master/face.gif" width=320 height=240></td> <td><img src="https://github.com/abhi-kumar/monk_det_demos/blob/master/pose_demo.gif" width=320 height=240></td> <td><img src="https://github.com/abhi-kumar/monk_det_demos/blob/master/ucf-demo.gif" width=320 height=240></td> </tr> <tr> <td>Object Re-identification</td> <td>Scene Text Localization</td> <td>Object Tracking</td> </tr> <tr> <td><img src="https://github.com/abhi-kumar/monk_det_demos/blob/master/coming_soon.jpg" width=320 height=240></td> <td><img src="https://github.com/abhi-kumar/monk_det_demos/blob/master/text_demo.gif" width=320 height=240></td> <td><img src="https://github.com/abhi-kumar/monk_det_demos/blob/master/coming_soon.jpg" width=320 height=240></td> </tr> </table>

For more such tutorials visit Application Model Zoo

<br /> <br />

Important Elements

<br /> <br /> <br />

Training Engine Algorithms

- Train models on custom dataset with low code syntax
- Pretrained examples on variety of datasets
- Useful to train your own detector

NOTE - See the licence file mentioned in the pipelines before using them

S.No.Algorithm TypeAlgorithmModel variationsInstallationExample NotebooksCodeCreditsOriginal Usage LicenseFunctional Docs
1Object DetectionGluonCV Finetune5LINKLINKLINKLINKApache 2.0LINK
2Object DetectionTensorflow Object Detection 1.022LINKLINKLINKLINKApache 2.0In Development
3Object DetectionTensorflow Object Detection 2.026LINKLINKLINKLINKApache 2.0In Development
4Object DetectionPytorch Efficient-Det 11LINKLINKLINKLINKMITLINK
5Object DetectionPytorch Efficient-Det 28LINKLINKLINKLINKLGPL 3.0In Development
6Object DetectionTorchVision Finetune1LINKLINKLINKLINKBSD-3-ClauseLINK
7Object DetectionMx-RCNN3LINKLINKLINKLINKMixedLINK
8Object DetectionPytorch-Retinanet5LINKLINKLINKLINKApache 2.0LINK
9Object DetectionCornerNet Lite2LINKLINKLINKLINKBSD-3-ClauseLINK
10Object DetectionYoloV37LINKLINKLINKLINKGPL 3.0LINK
11Object DetectionRFBNet3LINKLINKLINKLINKMITLINK
12Object DetectionSlim-Yolo-V31LINKLINKLINKLINKLicense Not AvailableIn Development
13Object DetectionPytorch SSD3LINKLINKLINKLINKMITIn Development
14Object DetectionPytorch-Peleenet1LINKLINKLINKLINKLicense Not AvailableIn Development
15Object DetectionMM-Detection36LINKLINKLINKLINKApache 2.0In Development
16Image SegmentationSegmentation Models4LINKLINKLINKLINKMITIn Development
17Pytorch RetinafaceFace Detection2LINKLINKLINKLINKMITIn Development
18Action RecognitionMM-Action28LINKLINKLINKLINKApache 2.0In Development
19Text LocalizationPytorch-TextSnake1LINKLINKLINKLINKMITIn Development
20Image SegmentationSOLO - V1/V214LINKLINKLINKLINKAcademic non-commercial usageIn Development
21Image SegmentationMask-RCNN (MMDetect)8LINKLINKLINKLINKApache 2.0In Development
22Pose EstimationGluonCV Pose11LINKLINKLINKLINKApache 2.0
<br /> <br /> <br />

Inference Engine Algorithms

- Infer already trained models on COCO/VOC/Open-Images on your custom data
- Useful to analyse computation time metrics
S.No.Algorithm TypeAlgorithmModel ValriationsModel Trained OnInstallationExample NotebookCodeCreditsFunctional Docs
1Object DetectionGluonCV Finetune4COCOPascal VOCLINKLINKLINKLINK
2Object DetectionPytorch EfficientDet8COCOLINKLINKLINKLINKIn Development
3Object DetectionDetecto-RS2COCOLINKLINKLINKLINKIn Development
<br /> <br /> <br />

Aknowledgements

Author

Tessellate Imaging - https://www.tessellateimaging.com/

Check out Monk AI - (https://github.com/Tessellate-Imaging/monk_v1)

Monk features
    - low-code
    - unified wrapper over major deep learning framework - keras, pytorch, gluoncv
    - syntax invariant wrapper

Enables developers
    - to create, manage and version control deep learning experiments
    - to compare experiments across training metrics
    - to quickly find best hyper-parameters

To contribute to Monk AI or Monk Object Detection repository raise an issue in the git-repo or dm us on linkedin

<br /> <br />

Copyright

Copyright 2019 onwards, Tessellate Imaging Private Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this project's files except in compliance with the License. A copy of the License is provided in the LICENSE file in this repository.