Awesome
PSSAttention
Codes for # ACL2019 paper "Progressive Self-Supervised Attention Learning for Aspect-Level Sentiment Analysis", which contains TNet-Att(+AS) and MN(+AS)
and Codes for # AI 2021 paper "Enhanced Aspect-Based Sentiment Analysis Models with Progressive Self-supervised Attention Learning", which contains Bert.
Bert(+AS)
The usages are the same as TNet-Att(+AS).
Citation
If the code is used in your research, please cite our paper as follows:
@article{Tang:AI2021,
author={Jinsong Su, Jialong Tang, Hui Jiang, Ziyao Lu, Yubin Ge, Linfeng Song, Deyi Xiong, Le Sun, Jiebo Luo},
title={Enhanced Aspect-Based Sentiment Analysis Models with Progressive Self-supervised Attention Learning},
year={2021},
journal={Artificial Intelligence}
}
TNet-Att(+AS)
Update
Load pretrained model or Save trained model.
Requirements
- Python 3.6
- Theano 0.9.0
- numpy 1.13.1
- pygpu 0.6.9
- GloVe.840B.300d
Running
THEANO_FLAGS="device=gpu0" python main_total.py -ds_name [YOUR_DATASET_NAME] -log_name [YOUR_LOG_NAME]
Citation
If the code is used in your research, please cite our paper as follows:
@inproceedings{Tang:ACL2019,
author={Jialong Tang, Ziyao Lu, Jinsong Su, Yubin Ge, Linfeng Song, Le Sun, Jiebo Luo},
title={Progressive Self-Supervised Attention Learning for Aspect-Level Sentiment Analysis},
year={2019},
booktitle={ACL}
}
Note
Most of this code and data are borrowed from:
@inproceedings{Li:ACL2018,
author={Li, Xin and Bing, Lidong and Lam, Wai and Shi, Bei},
title={Transformation Networks for Target-Oriented Sentiment Classification},
year={2018},
booktitle={ACL}
}
MN(+AS)
Requirements
- Python 2.7.0 or higher
- TensorFlow 1.6.0 or higher
- GloVe.840B.300d
Set envirnment variables to enable the GPU support
export PATH=/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
export PYTHONPATH=/PATH/TO/MN(+AS):$PYTHONPATH
Data
''' Use MN(+AS)/scripts/build_vocab.py to generate Vocab
python MN(+AS)/scripts/build_vocab.py /PATH/TO/DATA /PATH/TO/Vocab
Running
- Use MN(+AS)/bin/train.py to train baseline models for futher erasing and mining.
python MN(+AS)/bin/train.py \
--input /PATH/TO/TRAIN_SET_i/context /PATH/TO/TRAIN_SET_i/aspect /PATH/TO/TRAIN_SET_i/polarity \
--validation /PATH/TO/VAL_SET|TEST_SET/context /PATH/TO/VAL_SET|TEST_SET/aspect /PATH/TO/VAL_SET|TEST_SET/polarity \
--vocabulary /PATH/TO/Vocab \
--model BL_MN \
--parameters=device_list=[0],train_steps=20000,hops=1 \
--pretrained_embedding /PATH/TO/PRETRAINED_EMBEDDING \
--output /PATH/TO/TRAINED_MODEL_i
- Use MN(+AS)/bin/predicter.py to get the attention weights of training instances.
python MN(+AS)/bin/predicter.py \
--input /PATH/TO/TRAIN_SET_i/context /PATH/TO/TRAIN_SET_i/aspect /PATH/TO/TRAIN_SET_i/polarity \
--vocabulary /PATH/TO/Vocab \
--models BL_MN \
--checkpoints /PATH/TO/TRAINED_MODEL_i \
--parameters=predict_batch_size=32,device_list=[0],hops=1 \
--output /PATH/TO/LOG
- Use MN(+AS)/scripts/erasing_data.py to erase data to get TRAIN_SET_(i+1).
python MN(+AS)/scripts/erasing_data.py
-
Back to step 1, until i==5.
-
Use MN(+AS)/bin/final_train.py to train final model.
python SEMEVAL/thumt/bin/final_train.py \
--input /PATH/TO/TRAIN_SET/context /PATH/TO/TRAIN_SET/aspect /PATH/TO/TRAIN_SET/polarity /PATH/TO/TRAIN_SET/AS
_value /PATH/TO/TRAIN_SET/polarity/AS_mask \
--validation /PATH/TO/VAL_SET|TEST_SET/context /PATH/TO/VAL_SET|TEST_SET/aspect /PATH/TO/VAL_SET|TEST_SET/polarity \
--vocabulary /PATH/TO/Vocab \
--model FINAL_BL_MN \
--parameters=device_list=[0],train_steps=10000,hops=1 \
--pretrained_embedding /PATH/TO/PRETRAINED_EMBEDDING \
--output /PATH/TO/TRAINED_MODEL_i
Citation
If the code is used in your research, please cite our paper as follows:
@inproceedings{Tang:ACL2019,
author={Jialong Tang, Ziyao Lu, Jinsong Su, Yubin Ge, Linfeng Song, Le Sun, Jiebo Luo},
title={Progressive Self-Supervised Attention Learning for Aspect-Level Sentiment Analysis},
year={2019},
booktitle={ACL}
}
Note
Most of this code and data are borrowed from:
https://github.com/THUNLP-MT/THUMT