Home

Awesome

mathematics-roadmap

A Comprehensive Roadmap for Mathematics (in progress)

Keywords: mathematics roadmap, mathematics, roadmap, mathematics study plan, mathematics references, references, mathematics books, books

Audience

This roadmap is primarily intended for students of Mathematics. This doesn't necessarily mean that students from other disciplines such as Physics and Computer Science won't benefit from it; however, looking at the roadmap could be overwhelming for them, but this is because Mathematics has many areas and the roadmap was intended to be comprehensive to include them.

Roadmap Image

The file mathematics-roadmap.jpg contains the image of the roadmap. roadmap

Philosophy

Problems with learning Mathematics

There are several problems with the way Mathematics is presented and taught today which causes all the confusion and struggle that the students experience. In my opinion, the main problem is the way in which Mathematics is currently written in the textbooks. Mathematics is considered to be a deductive science, i.e., starts from first principles (called Axioms or Postulates) and a set of logical rules that are used to establish results (called Theorems) from these first principles; hence, it is typically written in that systematic order to reflect its underlying logical structure. I don't mean from this that it is a "bad" way to write Mathematics in, and I would even say that this is how mathematics should be written "rigorously". However, "rigorously" doesn't imply "pedagogically effective", that is, we don't "naturally" think within the bounds of the axiomatic method. This, also, doesn't imply that we will need to get entirely rid of writing axiomatically either, but to seek somewhere between logical rigor and effective pedagogy. The lack of motivation for the axioms and definitions and the precedence of abstractions to concrete examples (or instances) make students feel that the subject could only be fully understood by an elite few (geniuses). One can hardly find a textbook on any topic that includes its history, philosophy & motivation, and to also contain all the theorems and proofs that the other textbooks contain.

Objective

I don't intend here to offer solutions to the problems mentioned above; however, using the best (pedagogically best) of available references, I wish to construct an effective and comprehensive roadmap for learning Mathematics which approximates my idea of good mathematical exposition.

I emphasize the importance of the relation of other subjects to Mathematics. Of course, Philosophy lays down the conceptual framework that encompasses the entirety of human knowledge so it relates to any field or science not just Mathematics but Philosophy always had a special relationship with Mathematics and anyone who reads Philosophy can clearly see that. Philosophy impacts one's thought and makes him independent, aware, self-reflective, critical, rigorous, and always seeking for deep understanding. Although I started the roadmap with Philosophy because of my obvious bias, you can skip it but I highly recommend reading at least one book. Also, there are many other important subjects such as Computer Science and Physics which are strongly connected to Mathematics if not sometimes regarded as subsets of Mathematics. Throughout history, Mathematics was strongly influenced by these subjects, and in turn, Mathematics also influenced them. Many ideas in Mathematics have their origins in problems in subjects elsewhere so these subjects are extremely useful for motivating these ideas.

Learning Tips

Learning Mathematics is a tedious task that requires long periods of conscious effort and patience. I offer some tips which I consider to be of great importance when learning any subject within Mathematics (which could be applied elsewhere).

Reading Tips

How should one approach books? Should the reader go through every word from the first page to the last page? Should you solve every single problem? These questions are typical regarding book reading, and answering them is not a straightforward task. I will provide general guidelines, and accordingly the reader should find suitable answers for these questions.

How to use the Roadmap

The roadmap consists of topics, each represented as a labeled group of rectangles. The arrow connecting two groups (say from A to B) represents a dependency (B depends on A). Sometimes the dependency of either of the topics on the other is vague or they are interrelated so a two-sided arrow is used. Colors indicate whether the topics are essential (you can't skip them), optional but recommended (they are not essential but very beneficial), or optional (reading them or skipping them is up to you so they are just regarded as additional information). The legend indicates these colors.

Each topic has multiple books. This is since any two books in a single topic are either mostly similar but differ in a few aspects (e.g. how they explain some concepts or how the subjects are ordered) or they complement one another (so one book has subjects not discussed in the other). I recommend that the reader should look at the preface and/or introduction and the table of contents to see whether the book satisfies his/her needs and to be able to compare the differences between the books easily.

The file mathematics-roadmap-topics.md contains all the topics of the roadmap with the books in text format if it suits you better, which can also help if you want to arrange your own roadmap.

Software

The software used to create these diagrams is draw.io. Just open the file mathematics-roadmap.html and you can start editing.