Home

Awesome

A-GCRNN: Attention Graph Convolution Recurrent Neural Network for Multi-band Spectrum Prediction

This is a PyTorch implementation of A-GCRNN in the following paper: A-GCRNN: Attention Graph Convolution Recurrent Neural Network for Multi-band Spectrum Prediction(https://ieeexplore.ieee.org/document/10251662).

Structure

<div align=center><img src="https://github.com/TLTLHILL/A-GCRNN-for-spectrum-prediction/blob/main/photo/A-GCRNN.png" width="500" height="470" /></div>

Dataset

The dataset for this project comes from the open source platform: https://electrosense.org

Dataset parametersValue
Dataset sourcehttps://electrosense.org
Sensor locationMadrid, Spain
Frequency band500 MHz–800 MHz
Monitoring time2021.5.28–2021.6.28
Frequency resolution2 MHz
Time resolution15 minutes
The dimensionality of samples151 × 2880

!!!The opening time of sensors on this platform is uncertain, and there may be some sensors shutdown.

Usage

File description

Requirements

Model training

python main.py --model_name AGCRNN --max_epochs 3000 --learning_rate 0.0001 --batch_size 64 --hidden_dim 100  --settings supervised --gpus 1

Model test

python test_main.py --model_name AGCRNN --max_epochs 3000 --learning_rate 0.0001 --batch_size 64 --hidden_dim 100  --settings supervised --gpus 1

Parameters description

!!!These parameters can be adjusted independently.

ParametersDescription
--dataThe name of the dataset
--seq_lenRequired historical data length
--pre_lenPredicted data length
--split_ratioDataset spliting ratio
--hidden_dimNumber of GRU hidden layers

Run tensorboard --logdir lightning_logs/version_0 --samples_per_plugin scalars=999999999 in terminal to view the prediction results and experimental indicators.

Citation

Please cite the following paper if you use the code in your work:

@ARTICLE{ZhangTVT2023a,
  author={Zhang, Xile and Guo, Lantu and Ben, Cui and Peng, Yang and Wang, Yu and Shi, Shengnan and Lin, Yun and Gui, Guan},
  journal={IEEE Transactions on Vehicular Technology}, 
  title={A-GCRNN: Attention Graph Convolution Recurrent Neural Network for Multi-Band Spectrum Prediction}, 
  year={2023},
  doi={10.1109/TVT.2023.3315450}}