Home

Awesome

<p align="center"> 🏠 <a href="https://codegeex.cn" target="_blank">主页</a>|🛠 插件 <a href="https://marketplace.visualstudio.com/items?itemName=aminer.codegeex" target="_blank">VS Code</a>, <a href="https://plugins.jetbrains.com/plugin/20587-codegeex" target="_blank">Jetbrains</a>|🤗 <a href="https://huggingface.co/THUDM/codegeex2-6b" target="_blank">模型下载</a>|📄 <a href="https://arxiv.org/abs/2303.17568" target="_blank">论文</a>|👋 加入<a href="resources/wechat.md"target="_blank">微信开发者交流群</a> </p>

Read this in English<br> 日本語で読む<br> Lire en Français

⭐️ 最新一代 CodeGeeX4 模型已经正式开源。 The newest CodeGeeX4 has been released.

CodeGeeX2: 更强大的多语言代码生成模型

CodeGeeX2 是多语言代码生成模型 CodeGeeX (KDD’23) 的第二代模型。不同于一代 CodeGeeX(完全在国产华为昇腾芯片平台训练) ,CodeGeeX2 是基于 ChatGLM2 架构加入代码预训练实现,得益于 ChatGLM2 的更优性能,CodeGeeX2 在多项指标上取得性能提升(+107% > CodeGeeX;仅60亿参数即超过150亿参数的 StarCoder-15B 近10%),更多特性包括:

使用教程

AI编程助手

我们开发了支持 VS Code、 IntelliJ IDEA、PyCharm、GoLand、WebStorm、Android Studio 等IDE的 CodeGeeX 插件。在插件中,可以更直接地体验到 CodeGeeX2 模型在代码生成与补全、添加注释、代码翻译及技术问答方面的能力为开发效率带来的提升。欢迎在IDE中下载 CodeGeeX 插件获得更加全面的AI编程体验,详情见CodeGeeX主页

快速开始

使用transformers快速调用CodeGeeX2-6B

from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("THUDM/codegeex2-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/codegeex2-6b", trust_remote_code=True, device='cuda')
model = model.eval()

# remember adding a language tag for better performance
prompt = "# language: Python\n# write a bubble sort function\n"
inputs = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(inputs, max_length=256, top_k=1)
response = tokenizer.decode(outputs[0])

>>> print(response)
# language: Python
# write a bubble sort function


def bubble_sort(list):
    for i in range(len(list) - 1):
        for j in range(len(list) - 1):
            if list[j] > list[j + 1]:
                list[j], list[j + 1] = list[j + 1], list[j]
    return list


print(bubble_sort([5, 2, 1, 8, 4]))

启动 Gradio DEMO:

python ./demo/run_demo.py

usage: run_demo.py [-h] [--model-path MODEL_PATH] [--example-path EXAMPLE_PATH] [--quantize QUANTIZE]
                   [--chatglm-cpp] [--fastllm] [--n-gpus N_GPUS] [--gpu GPU] [--cpu] [--auth] [--username yourname]
                   [--password yourpassword]
                   [--port PORT] [--listen ADDRESS]

# 若要启用身份验证,请先启用--auth,然后定义--username与--password,如:
python run_demo.py --auth --username user --password password  # 若要监听所有地址请指定 --listen 0.0.0.0

支持使用 ChatGLM.cpp 量化推理加速:

python ./demo/run_demo.py --quantize 4 --chatglm-cpp

启动FAST API:

python ./demo/fastapicpu.py
usage: fastapicpu.py [-h] [--model-path MODEL_PATH] [--listen ADDRESS] [--port PORT] [--workders NUM] [--cpu] [--half] [--quantize QUANTIZE] [--chatglm-cpp]
# --cpu启用cpu --half启用.half()

支持使用 ChatGLM.cpp 量化推理加速,同样添加 --quantize 4 --chatglm-cpp 参数即可。

API使用示例

curl -X POST "http://127.0.0.1:7860" \
    -H 'Content-Type: application/json' \
    -d '{"lang": "Python", "prompt": "# Write a quick sort function"}'

❗️请注意:

代码能力评测

CodeGeeX2 作为一个多语言代码生成基座模型,代码能力较上一代大幅提升,以下是在 HumanEval,HumanEval-X, DS1000 基准上的评测结果(评价指标 Pass@k 定义与论文中一致):

HumanEval (Pass@1,10,100)

ModelPass@1Pass@10Pass@100
CodeGen-16B-multi19.234.655.2
CodeGeeX-13B22.939.660.9
Codex-12B28.846.872.3
CodeT5Plus-16B-mono30.951.676.7
Code-Cushman-00133.554.377.4
LLaMA-65B23.7-79.3
LLaMA2-70B29.9--
CodeGen2.5-7B-mono33.458.482.7
StarCoder-15B33.261.084.7
CodeGeeX2-6B35.962.688.3

Pass@1 使用 n=20, t=0.2, top_p=0.95Pass@10,Pass@100 使用 n=200, t=0.8, top_p=0.95

HumanEval-X (Pass@1)

ModelPythonC++JavaJavaScriptGoRustOverall
CodeGen-16B-multi19.218.115.018.413.01.814.2
CodeGeeX-13B22.917.120.017.614.44.316.0
Replit-code-v1-3B22.020.120.120.112.28.617.2
CodeGen2.5-7B-multi30.624.329.027.518.920.125.1
StarCoder-15B35.528.231.533.221.317.827.9
CodeGeeX2-6B35.929.330.832.222.518.128.1

Pass@1 使用 n=20, t=0.2, top_p=0.95

以上结果可使用脚本scripts/run_humanevalx.sh复现。环境配置和说明参见评测环境

DS1000 (Pass@1)

ModelMatplotlibNumpyPandasPytorchSciPyScikit-learnTensorFlowOverall
# Samples15522029168106115451000
CodeGen-16B-Mono31.710.93.47.09.010.815.211.7
code-cushman-00140.721.87.912.411.318.012.218.1
Codex-00141.826.69.49.715.018.517.220.2
CodeGeeX2-6B40.525.514.517.319.324.023.023.1
StarCoder-15B51.729.711.421.420.229.524.526.0
Codex-00257.043.126.541.831.844.839.339.2

Pass@1 使用 n=40, t=0.2, top_p=0.5

以上结果可使用DS1000评测代码复现。

量化推理性能

CodeGeeX2 与上一代相比,对部署更加友好。得益于使用 Multi-Query Attention 和 Flash Attention,推理速度更快,且量化后仅需6GB显存即可运行:

量化

ModelFP16/BF16INT8INT4
CodeGeeX-13B26.9 GB14.7 GB-
CodeGeeX2-6B13.1 GB8.2 GB5.5 GB

基于 PyTorch 2.0 测试,利用torch.nn.functional.scaled_dot_product_attention实现高效的 Attention 计算。

推理

Model推理速度 (字符/秒)
CodeGeeX-13B32
CodeGeeX2-6B94

batch_size=1, max_length=2048,均使用加速框架,测试硬件为GeForce RTX-3090

协议

本仓库的代码依照 Apache-2.0 协议开源,模型的权重的使用则需要遵循 Model License。CodeGeeX2-6B 权重对学术研究完全开放,填写登记表申请商业使用。

引用

如果觉得我们的工作有帮助,欢迎引用以下论文:

@inproceedings{zheng2023codegeex,
  title={CodeGeeX: A Pre-Trained Model for Code Generation with Multilingual Benchmarking on HumanEval-X},
  author={Qinkai Zheng and Xiao Xia and Xu Zou and Yuxiao Dong and Shan Wang and Yufei Xue and Zihan Wang and Lei Shen and Andi Wang and Yang Li and Teng Su and Zhilin Yang and Jie Tang},
  booktitle={Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining},
  pages={5673--5684},
  year={2023}
}