Awesome
MetaKGR
Source codes and datasets for EMNLP 2019 paper Adapting Meta Knowledge Graph Information for Multi-Hop Reasoning over Few-Shot Relations
Requirements
- python3 (tested on 3.6.6)
- pytorch (tested on 0.4.1)
Installation
python3 -m pip install -r requirements.txt
Data Preparation
Unpack the data files
unzip data.zip
and there will be two datasets under folder data
.
# dataset FB15K-237
data/FB15K-237
# dataset NELL-995
data/NE
Pretrain Knowledge Graph Embedding
./experiment-emb.sh configs/<dataset>-<model>.sh --train <gpu-ID>
dataset
is the name of datasets and model
is the name of knowledge graph embedding model. In our experiments, dataset
could be fb15k-237
and NE
, model
could be conve
and distmult
. <gpu-ID>
is a non-negative integer number representing the GPU index.
Meta Learning
# take FB15K-237 for example
./experiment-rs.sh configs/fb15k-237-rs.sh --train <gpu-ID> --few_shot
Fast Adaptation
# take FB15K-237 for example
./experiment-rs.sh configs/fb15k-237-rs.sh --train <gpu-ID> --adaptation --checkpoint_path model/FB15K-237-point.rs.conve-xavier-n/a-200-200-3-0.001-0.3-0.1-0.5-400-0.02/checkpoint-<Epoch>.tar
<Epoch>
is a non-negative integer number representing the training epoch for meta-learning. We can assign <Epoch>
to be 15 on FB15K-237.
Test
# take FB15K-237 for example
./experiment-rs.sh configs/fb15k-237-rs.sh --inference <gpu-ID> --few_shot --checkpoint_path model/FB15K-237-point.rs.conve-xavier-n/a-200-200-3-0.001-0.3-0.1-0.5-400-0.02/checkpoint-<Epoch_Adapt>-[relation].tar
<Epoch_Adapt>
is a non-negative integer number representing the training epoch for fast adaptation. We can assign <Epoch_Adapt>
to be 39 on FB15K-237.
Cite
If you use the code, please cite this paper:
Xin Lv, Yuxian Gu, Xu Han, Lei Hou, Juanzi Li, Zhiyuan Liu. Adapting Meta Knowledge Graph Information for Multi-Hop Reasoning over Few-Shot Relations. The Conference on Empirical Methods in Natural Language Processing (EMNLP 2019).