Home

Awesome

Awesome-Multi-Setting-UIAD Awesome

A taxonomy of Unsupervised Industrial Anomaly Detection (UIAD) methods and datasets (updating).

Welcome to follow our papers "A Survey on RGB, 3D, and Multimodal Approaches for Unsupervised Industrial Anomaly Detection".

If you find any errors in our survey and resource repository, or if you have any suggestions, please feel free to contact us via email at: olsunnylo@outlook.com.

Contents

Overview

Roadmap

roadmap.png

Methods

paradigms.png

RGB UIAD

Datasets

DatasetResourceYearTypeTrainTest (good)Test (anomaly)ValTotalClassAnomaly TypeModal Type
MVTec AD <br>Data2019Real36294671258-53541573RGB
BTAD <br>Data2021Real1799451290-25403-RGB
MPDD <br>Data2021Real888176282-13466-RGB
MVTec LOCO-AD <br>Data2022Real17725759933043644589RGB
VisA <br>Data2022Real962101200-1082112-RGB
GoodsAD <br>Data2023Real313613281660-61246-RGB
MSC-AD <br>-2023Real648021601080-9720125RGB
CID <br>Data2024Real390033360-429316RGB
Real-IAD <br>Data2024Real72840078210-151050308RGB
RAD <br>Data2024Real213731224-15104-RGB
MIAD <br>Data2023Synthetic700001750017500-105000713RGB
MAD-Sim <br>Data2023Synthetic42006384951-9789203RGB
DTD-Synthetic <br>Data2024Synthetic1200357947-250412-RGB
<!-- | [**dataset**](web) <br> | [data](data_web) | - | - | - | - | - | - | - | - | - | - | -->

Methods

NameTitlePublicationYearCodeParadigm
USUninformed Students: Student-Teacher Anomaly Detection With Discriminative Latent Embeddings <br>CVPR2020CodeTeacher-student architecture
MKDMultiresolution knowledge distillation for anomaly detection <br>CVPR2021CodeTeacher-student architecture
GPGlancing at the patch: Anomaly localization with global and local feature comparison <br>CVPR2021-Teacher-student architecture
RD4ADAnomaly Detection via Reverse Distillation From One-Class Embedding <br>CVPR2022CodeTeacher-student architecture
PFMUnsupervised Image Anomaly Detection and Segmentation Based on Pretrained Feature Mapping <br>TII2023CodeTeacher-student architecture
MemKDRemembering Normality: Memory-guided Knowledge Distillation for Unsupervised Anomaly Detection <br>ICCV2023CodeTeacher-student architecture
DeSTSegDeSTSeg: Segmentation Guided Denoising Student-Teacher for Anomaly Detection <br>CVPR2023CodeTeacher-student architecture
EfficientADEfficientAD: Accurate Visual Anomaly Detection at Millisecond-Level Latencies <br>WACV2024Unofficial CodeTeacher-student architecture
EMMFRKDEnhanced multi-scale features mutual mapping fusion based on reverse knowledge distillation for industrial anomaly detection and localization <br>TBD2024-Teacher-student architecture
AEKDAEKD: Unsupervised auto-encoder knowledge distillation for industrial anomaly detection <br>JMS2024-Teacher-student architecture
FCACDLFeature-Constrained and Attention-Conditioned Distillation Learning for Visual Anomaly Detection <br>ICASSP2024-Teacher-student architecture
DMDDDual-Modeling Decouple Distillation for Unsupervised Anomaly Detection <br>ACM MM2024-Teacher-student architecture
CutPasteCutPaste: Self-Supervised Learning for Anomaly Detection and Localization <br>CVPR2021Unofficial CodeOne-class classification
SimpleNetSimpleNet: A Simple Network for Image Anomaly Detection and Localization <br>CVPR2023CodeOne-class classification
ADShiftAnomaly Detection Under Distribution Shift <br>ICCV2023CodeOne-class classification
DS2Learning Transferable Representations for Image Anomaly Localization Using Dense Pretraining <br>WACV2024-One-class classification
GeneralADGeneralAD: Anomaly Detection Across Domains by Attending to Distorted Features <br>ECCV2024CodeOne-class classification
GLASSA Unified Anomaly Synthesis Strategy with Gradient Ascent for Industrial Anomaly Detection and Localization <br>ECCV2024CodeOne-class classification
FastFlowFastFlow: Unsupervised Anomaly Detection and Localization via 2D Normalizing Flows <br>-2021Unofficial CodeDistribution map
DifferNetSame Same but DifferNet: Semi-Supervised Defect Detection With Normalizing Flows <br>WACV2021CodeDistribution map
CFLOW-ADCFLOW-AD: Real-Time Unsupervised Anomaly Detection With Localization via Conditional Normalizing Flows <br>WACV2022CodeDistribution map
CS-FlowFully Convolutional Cross-Scale-Flows for Image-Based Defect Detection <br>WACV2022CodeDistribution map
CDOCollaborative Discrepancy Optimization for Reliable Image Anomaly Localization <br>TII2023CodeDistribution map
PyramidFlowPyramidFlow: High-Resolution Defect Contrastive Localization Using Pyramid Normalizing Flow <br>CVPR2023CodeDistribution map
SLADFascinating Supervisory Signals and Where to Find Them: Deep Anomaly Detection with Scale Learning <br>ICML2023CodeDistribution map
MSFlowMSFlow: Multiscale Flow-Based Framework for Unsupervised Anomaly Detection <br>TNNLS2024CodeDistribution map
AttentDifferNetAttention Modules Improve Image-Level Anomaly Detection for Industrial Inspection: A DifferNet Case Study <br>WACV2024CodeDistribution map
PaDiMPaDiM: A Patch Distribution Modeling Framework for Anomaly Detection and Localization <br>ICPR2021Unofficial CodeMemory bank
PatchCoreTowards Total Recall in Industrial Anomaly Detection <br>CVPR2022CodeMemory bank
CFACFA: Coupled-Hypersphere-Based Feature Adaptation for Target-Oriented Anomaly Localization <br>IEEE Access2022CodeMemory bank
DMADDiversity-Measurable Anomaly Detection <br>CVPR2023CodeMemory bank
PNIPNI : Industrial Anomaly Detection using Position and Neighborhood Information <br>ICCV2023CodeMemory bank
GraphCorePushing the Limits of Fewshot Anomaly Detection in Industry Vision: Graphcore <br>ICLR2023-Memory bank
InReaChInter-Realization Channels: Unsupervised Anomaly Detection Beyond One-Class Classification <br>ICCV2023CodeMemory bank
ReconFAA Reconstruction-Based Feature Adaptation for Anomaly Detection with Self-Supervised Multi-Scale Aggregation <br>ICASSP2024-Memory bank
ReConPatchReConPatch: Contrastive Patch Representation Learning for Industrial Anomaly Detection <br>WACV2024Unofficial CodeMemory bank
AE-SSIMImproving Unsupervised Defect Segmentation by Applying Structural Similarity to Autoencoders <br>-2018Unofficial CodeAutoencoder-based Reconstruction
DFRUnsupervised anomaly segmentation via deep feature reconstruction <br>Neurocomputing2020CodeAutoencoder-based Reconstruction
DAADDivide-and-Assemble: Learning Block-Wise Memory for Unsupervised Anomaly Detection <br>ICCV2021-Autoencoder-based Reconstruction
RIADReconstruction by inpainting for visual anomaly detection <br>PR2021Unofficial CodeAutoencoder-based Reconstruction
DRÆMDRAEM - A Discriminatively Trained Reconstruction Embedding for Surface Anomaly Detection <br>ICCV2021CodeAutoencoder-based Reconstruction
DSRDSR – A Dual Subspace Re-Projection Network for Surface Anomaly Detection <br>ECCV2022CodeAutoencoder-based Reconstruction
NSANatural Synthetic Anomalies for Self-Supervised Anomaly Detection and Localization <br>ECCV2022CodeAutoencoder-based Reconstruction
SSPCABSelf-Supervised Predictive Convolutional Attentive Block for Anomaly Detection <br>CVPR2022CodeAutoencoder-based Reconstruction
SSMCTBSelf-Supervised Masked Convolutional Transformer Block for Anomaly Detection <br>TPAMI2024CodeAutoencoder-based Reconstruction
THFRTemplate-guided Hierarchical Feature Restoration for Anomaly Detection <br>ICCV2023-Autoencoder-based Reconstruction
FastReconFastRecon: Few-shot Industrial Anomaly Detection via Fast Feature Reconstruction <br>ICCV2023CodeAutoencoder-based Reconstruction
RealNetRealNet: A Feature Selection Network with Realistic Synthetic Anomaly for Anomaly Detection <br>CVPR2024CodeAutoencoder-based Reconstruction
IFgNetImplicit Foreground-Guided Network for Anomaly Detection and Localization <br>ICASSP2024CodeAutoencoder-based Reconstruction
LAMPNeural Network Training Strategy To Enhance Anomaly Detection Performance: A Perspective On Reconstruction Loss Amplification <br>ICASSP2024-Autoencoder-based Reconstruction
PatchAnomalyPatch-Wise Augmentation for Anomaly Detection and Localization <br>ICASSP2024-Autoencoder-based Reconstruction
MAAEMixed-Attention Auto Encoder for Multi-Class Industrial Anomaly Detection <br>ICASSP2024-Autoencoder-based Reconstruction
DC-AEDual-Constraint Autoencoder and Adaptive Weighted Similarity Spatial Attention for Unsupervised Anomaly Detection <br>TII2024-Autoencoder-based Reconstruction
SCADNLearning Semantic Context from Normal Samples for Unsupervised Anomaly Detection <br>AAAI2021CodeGAN-based Reconstruction
OCR-GANOmni-Frequency Channel-Selection Representations for Unsupervised Anomaly Detection <br>TIP2023CodeGAN-based Reconstruction
MeTALMasked Transformer for Image Anomaly Localization <br>IJNS2022-Transformer-based Reconstruction
FODFocus the Discrepancy: Intra- and Inter-Correlation Learning for Image Anomaly Detection <br>ICCV2023CodeTransformer-based Reconstruction
AMI-NetAMI-Net: Adaptive Mask Inpainting Network for Industrial Anomaly Detection and Localization <br>TASE2024CodeTransformer-based Reconstruction
PNPTPrior Normality Prompt Transformer for Multiclass Industrial Image Anomaly Detection <br>TII2024-Transformer-based Reconstruction
DDADAnomaly Detection with Conditioned Denoising Diffusion Models <br>-2023CodeDiffusion-based Reconstruction
DiffADUnsupervised Surface Anomaly Detection with Diffusion Probabilistic Model <br>ICCV2023-Diffusion-based Reconstruction
RANRemoving Anomalies as Noises for Industrial Defect Localization <br>ICCV2023-Diffusion-based Reconstruction
TransFusionTransFusion – A Transparency-Based Diffusion Model for Anomaly Detection <br>ECCV2024CodeDiffusion-based Reconstruction
DiADA Diffusion-Based Framework for Multi-Class Anomaly Detection <br>AAAI2024CodeDiffusion-based Reconstruction
GLADGLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection <br>ECCV2024CodeDiffusion-based Reconstruction
AnomalySDAnomalySD: Few-Shot Multi-Class Anomaly Detection with Stable Diffusion Model <br>-2024-Diffusion-based Reconstruction
<!-- | name | [**title**](web) <br> | venue | year | [Code](code_web) | paradigm | -->

3D UIAD

Datasets

DatasetResourceYearTypeTrainTest (good)Test (anomaly)ValTotalClassAnomaly TypeModal Type
Real3D-AD <br>data2023Real48604602-1254123Point cloud
Anomaly-ShapeNet <br>data2023Synthetic208780943-1931507Point cloud
<!-- | [**dataset**](web) <br> | [data](data_web) | - | - | - | - | - | - | - | - | - | - | -->

Methods

NameTitlePublicationYearCodeParadigm
3D-STAnomaly Detection in 3D Point Clouds Using Deep Geometric Descriptors <br>WACV2023-Teacher-student architecture
Reg3D-ADReal3D-AD: A Dataset of Point Cloud Anomaly Detection <br>NeurIPS2024CodeMemory bank
Group3ADTowards High-resolution 3D Anomaly Detection via Group-Level Feature Contrastive Learning <br>ACM MM2024CodeMemory bank
PointCorePointCore: Efficient Unsupervised Point Cloud Anomaly Detector Using Local-Global Features <br>-2024-Memory bank
R3D-ADR3D-AD: Reconstruction via Diffusion for 3D Anomaly Detection <br>ECCV2024-Reconstruction
<!-- | name | [**title**](web) <br> | venue | year | [Code](code_web) | paradigm | -->

Multimodal UIAD

Datasets

DatasetResourceYearTypeTrainTest (good)Test (anomaly)ValTotalClassAnomaly TypeModal Type
MVTec 3D-AD <br>data2021Real265629494829441471041RGB & Point cloud
PD-REAL <br>data2023Real23993005303003529156RGB & Point cloud
Eyecandies <br>data2022Synthetic100002250225010001550010-RGB & Depth
<!-- | [**dataset**](web) <br> | [data](data_web) | - | - | - | - | - | - | - | - | - | - | -->

Methods

NameTitlePublicationYearCodeParadigm
BTFBack to the Feature: Classical 3D Features Are (Almost) All You Need for 3D Anomaly Detection <br>CVPR2023Code-
ASTAsymmetric Student-Teacher Networks for Industrial Anomaly Detection <br>WACV2023CodeTeacher-student architecture
MMRDRethinking Reverse Distillation for Multi-Modal Anomaly Detection <br>AAAI2024-Teacher-student architecture
M3DMMultimodal Industrial Anomaly Detection via Hybrid Fusion <br>CVPR2023CodeMemory bank
CPMFComplementary Pseudo Multimodal Feature for Point Cloud Anomaly Detection <br>-2023CodeMemory bank
Shape-GuidedShape-Guided Dual-Memory Learning for 3D Anomaly Detection <br>ICML2023CodeMemory bank
LSFASelf-supervised Feature Adaptation for 3D Industrial Anomaly Detection <br>ECCV2024CodeMemory bank
ITNMIncremental Template Neighborhood Matching for 3D anomaly detection <br>Neurocomputing2024-Memory bank
CMDIADIncomplete Multimodal Industrial Anomaly Detection via Cross-Modal Distillation <br>-2024CodeMemory bank
M3DM-NRM3DM-NR: RGB-3D Noisy-Resistant Industrial Anomaly Detection via Multimodal Denoising <br>-2024-Memory bank
EasyNetEasyNet: An Easy Network for 3D Industrial Anomaly Detection <br>ACM MM2023CodeReconstruction
DBRNDual-Branch Reconstruction Network for Industrial Anomaly Detection with RGB-D Data <br>-2023-Reconstruction
3DSRCheating Depth: Enhancing 3D Surface Anomaly Detection via Depth Simulation <br>WACV2024CodeReconstruction
CFMMultimodal Industrial Anomaly Detection by Crossmodal Feature Mapping <br>CVPR2024CodeReconstruction
3DRÆMKeep DRÆMing: Discriminative 3D anomaly detection through anomaly simulation <br>PRL2024-Reconstruction
<!-- | name | [**title**](web) <br> | venue | year | [Code](code_web) | paradigm | -->

BibTex Citation

If you find this paper and repository useful, please cite our paper:

@article{lin2024survey,
  title={A Survey on RGB, 3D, and Multimodal Approaches for Unsupervised Industrial Anomaly Detection},
  author={Lin, Yuxuan and Chang, Yang and Tong, Xuan and Yu, Jiawen and Liotta, Antonio and Huang, Guofan and Song, Wei and Zeng, Deyu and Wu, Zongze and Wang, Yan and Zhang, Wenqiang},
  journal={arXiv preprint arXiv:2410.21982},
  year={2024}
}