Home

Awesome

Traffic-UAGCRNTF

Enhancing Spatiotemporal Traffic Prediction through Urban Human Activity Analysis

Traffic Prediction models - UAGCRN and UAGCTransformer

CIKM 2023 - "Enhancing Spatio-temporal Traffic Prediction through Urban Human Activity Analysis" paper

Dataset

You can download from Download

Traffic Dataset

Traffic Dataset Description

DATASETNSpeed (miles/hour)DatasizePLACEDURATIONINTERVAL
METR_LA20754 ± 2034,249Los Angeles, USAMar. 1, 2012 - Jun. 27, 20125min
PEMS_BAY32562 ± 1052,093San Francisco Bay Area, USAJan. 1, 2017 - Jun. 30, 20175min
PEMSD722859 ± 1312,652Los Angeles, USAMay. 1, 2012 - Jun.30, 20125min

National Household Survey

Citation

To recognize the valuable role of National Household Travel Survey (NHTS) data in the transportation research process and to facilitate repeatability of the research, users of NHTS data are asked to formally acknowledge the data source. Where possible, this acknowledgement should take place in the form of a formal citation, such as when writing a research report, planning document, on-line article, and other publications. The citation can be formatted as follows: U.S. Department of Transportation, Federal Highway Administration, 2017 National Household Travel Survey. URL: http://nhts.ornl.gov.

Download page

Sensor Location Correction

Corrected sensor location with osm path files are found in

METR-LA

Alt Text Alt Text Alt Text

PEMS-BAY

Alt Text Alt Text Alt Text

PEMSD7

Alt Text Alt Text Alt Text

Code

This installation command worked with our code execution:

conda deactivate
conda env remove -n CIKM
conda create -n CIKM -y
conda activate CIKM 
conda install python==3.10 -y
pip install tensorflow-gpu==2.10.0
pip install tqdm
pip install tables
pip install scipy==1.10.1
pip install pandas==1.5.3
pip install numpy==1.23.5

python train.py --model_name=MyUAGCRN --dataset=metr-la --Q=12 --activity_embedding --sensor_embedding --graph_type=cooccur_dist
python train.py --model_name=MyUAGCRN --dataset=pems-bay --Q=12 --activity_embedding --sensor_embedding --graph_type=cooccur_dist
python train.py --model_name=MyUAGCRN --dataset=pemsd7 --Q=9 --activity_embedding --sensor_embedding --graph_type=cooccur_dist
python train.py --model_name=MyUAGCTransformer --dataset=metr-la --Q=12 --activity_embedding --sensor_embedding --graph_type=cooccur_dist
python train.py --model_name=MyUAGCTransformer --dataset=pems-bay --Q=12 --activity_embedding --sensor_embedding --graph_type=cooccur_dist
python train.py --model_name=MyUAGCTransformer --dataset=pemsd7 --Q=9 --activity_embedding --sensor_embedding --graph_type=cooccur_dist

Performance Comparison

Alt Text

Ablation Study

Alt Text