Awesome
ALPS
This is the offical implement of our ALPS framwork.
Paper: "ALPS: An Auto-Labeling and Pre-training Scheme for Remote Sensing Segmentation With Segment Anything Model"
Usage
Environment
- Python 3.8.5
- Pytorch 1.12.1+cu113
- Torchvision 0.13.1+cu113
- Torchaudio 0.12.1+cu113
- scikit-learn 1.3.2
- segment-anything 1.0
Install Segment Anything:
git clone git@github.com:facebookresearch/segment-anything.git
cd segment-anything; pip install -e .
Click the links below to download the checkpoint for the corresponding model type.
- vit_h: ViT-H SAM model
- vit_l: ViT-L SAM model
- vit_b: ViT-B SAM model
Getting Started
- Follow the structure below to organize the dataset:
├──dataset_path
│ ├── img_dir
│ │ ├── train
│ │ │ ├── xxx{img_suffix}
│ │ │ ├── yyy{img_suffix}
│ │ │ ├── zzz{img_suffix}
│ │ │ ├── ....
│ │ ├── val
│ │ │ ├── xxx{img_suffix}
│ │ │ ├── yyy{img_suffix}
│ │ │ ├── zzz{img_suffix}
│ │ │ ├── ....
│ │ ├── test
│ │ │ ├── xxx{img_suffix}
│ │ │ ├── yyy{img_suffix}
│ │ │ ├── zzz{img_suffix}
│ │ │ ├── ....
- First, download the pre-trained SAM model checkpoint. Then, you can use the command line below to perform automatic labeling on your own datasets:
python main.py --root_dir .../dataset_path --image_suffix .png --sam_checkpoint .../sam_vit_h_4b8939.pth --model_type vit_h --number_clusters xx --vis True
- Additionally, our framework supports more customized parameter settings:
- 'process_list': This can be set to ‘train’, ‘val’, or ‘test’.
- 'threshold': This is the area size threshold used in the filtering gate module.
- 'label_dir': This is the path where the pseudo-labels are saved.
- 'device': This can be set to ‘cuda’ or ‘cpu’.
- 'batch_size': This is the batch size used in online K-means.
- More parameter settings can be found in the main.py file.