Awesome
ProgGen
This repo contains the code and datasets for paper "ProgGen: Generating Named Entity Recognition Datasets Step-by-step with Self-Reflexive Large Language Models".
We study 4 datasets: CoNLL-2003, WikiGold, MIT-Movie and MIT-Restaurant.
See sections (1) data
(reproduce
folder) for LLM prompts and responses and processed datasets and (2) commands
(scripts
folder) for reproducing the results in the main experiments.
Data
The reproduce
folder contains prompts, LLM responses and processed datasets as reported in our main experiments. It is organized as follows:
diversify-x
(Diversify X)gen-attr-dim
andgen-attr-val
contain prompts and responses for attribute dimensions and attribute values generation, respectively.config
contains processed attribute dimensions and values.
diversify-y
(Diversify X)gen-entity-vanilla
andgen-entity-latent
contain prompts and responses for named entity pool generation, for the vanilla and latent variant, respectively.config
contains processed named entities.
sample
for NER sample generationgen-sample
contains prompts and responses.dataset
contains processed NER datasets.
correction
for LLM self-correctiongen-correction
contains prompts and responses.config
contains entity-class-specific annotation instructions and demos for each dataset and each diversity approach.instruction&demo-pool
contains annotation instruction pool and demo pool for each entity class, shared for all diversity approaches, for illustration purposes.annotation-error
contains representative entity annotation errors from NER sample generation for each dataset.dataset
contains processed datasets with entity annotations overridden by processed corrections.
Note
- LLM prompts and responses are available in 2 formats:
- A readable format, via
prompts.log
andcompletion-*.txt
files, and - OpenAI API format, via
requests.jsonl
andrequests_results.jsonl
files.
- A readable format, via
- All folders are have date prefixes indicating date of experiments.
- In each processed dataset (
sample/dataset
) folder, each entity annotation triple (sentence, span, entity type) is available inlogprobs-triple.json
files. - Top-uncertain triples selected for LLM Self-Correction are available from correction generation log files (
correction/gen-correction/**/completion.log
)
Commands
We detail scripts for running experiments and reproducing our results with example commands.
Note
- Each script contains all relevant arguments (see
help
in each script andutils.py
). - It’s expected to run each script/command at the directory root level.
- Terminal logging messages (and log file writes) w.r.t each script will show where the relevant (dataset) files are saved.
- All OpenAI API responses and processed datasets will be written to the
generated_data
folder.
Before you run a script, make sure python sees the src
package folder:
export PYTHONPATH=$PYTHONPATH:$(pwd)
For all LLM generation steps, set your OpenAI API via
export OPENAI_API_KEY='<your-api-key>'
Environment Setup
Python version 3.8
1> Install conda environment
conda create -n prog-gen python=3.8 pip
2> Activate environment and install packages
conda activate prog-gen
pip install -r requirements.txt
Steps
Step 1: Write Original Dataset Samples
Includes writing (1) few-shot demo samples and (2) entire test set for each of the datasets studied. Intended for downstream model training.
See write_original_dataset.py
for details.
Example 1: Write few-shot demo samples for CoNLL-2003:
python scripts/write_original_dataset.py demo \
--dataset_name 'conll2003-no-misc' \
--n_demo 1 \
--include_negative_sample 1
Example 2: Write entire test set for MIT-Movie:
python scripts/write_original_dataset.py test --dataset_name 'mit-movie'
Note this step is not necessary as each subsequent step will automatically write the respective files if not found.
Step 2: Generate Diversify Requirement Configurations
Note that additional manual inspection and filtering for low-quality values may be needed.
1: Diversify X
Note we omit the step for attribute dimension generation as we queried the GPT-4 web App. See the paper for the prompt templates and reproduce
for the actual prompts used.
See generate_diversify_x_config.py
for details on generating attribute values.
Example on WikiGold:
python scripts/generate_diversity_config.py \
--dataset_name 'wiki-gold-no-misc' \
--diversity_variant 'diversify-x' \
--prompt_seed 42 \
--chat_model_name 'gpt-3.5-turbo-1106' \
--chat_timeout 30 \
--n_call 3
2: Diversify Y
Includes the vanilla and latent variants. See generate_diversify_y_config.py
Example 1: The vanilla variant on MIT-Restaurant:
python scripts/generate_diversity_config.py \
--dataset_name 'mit-restaurant' \
--diversity_variant 'diversify-y-vanilla' \
--prompt_seed 42 \
--chat_model_name 'gpt-3.5-turbo-1106' \
--chat_timeout 30 \
--n_call 10
Example 2: The latent variant on CoNLL-2003:
python scripts/generate_diversity_config.py \
--dataset_name 'conll2003-no-misc' \
--diversity_variant 'diversify-y-latent' \
--diversify_y_latent_attribute 'reproduce/diversify-x/config/conll2003_no_misc.json' \
--prompt_seed 42 \
--chat_model_name 'gpt-3.5-turbo-1106' \
--chat_max_tokens 256 \
--chat_timeout 30 \
--n_call 5
Note the internal name of the dataset-independent attribute dimension for each dataset is given by
DATASET_NAME2TOPIC_DIM = {
'conll2003-no-misc': 'news-category',
'wiki-gold-no-misc': 'topic',
'mit-movie': 'query-category',
'mit-restaurant': 'meal-category'
}
Step 3: Generate NER Samples
Includes Simple Prompt and all 4 diversity variants studied.
See generate_ner_sample.py
for details.
Example 1: Simple Prompt on MIT-Movie:
python scripts/generate_ner_sample.py \
--dataset_name 'mit-movie' \
--diversity_variant 'simple-prompt' \
--prompt_seed 42 \
--n_list 50 \
--n_call 36 \
--chat_model_name 'gpt-3.5-turbo-1106' \
--chat_max_tokens 2560 \
--chat_logprobs 'True' \
--chat_timeout 60
Note (1) a large n_list
(e.g. 50) may not yield 50 generated samples sometimes, as discussed in the paper, and (2) WikiGold generated samples are much longer so a relatively higher chat_max_tokens
is advised.
Example 2: Diversify X on WikiGold:
python scripts/generate_ner_sample.py \
--dataset_name 'wiki-gold-no-misc' \
--diversity_variant 'diversify-x' \
--diversify_x_config 'reproduce/diversify-x/config/wiki_gold_no_misc.json' \
--prompt_seed 42 \
--n_list 3 \
--n_call 600 \
--chat_model_name 'gpt-3.5-turbo-1106' \
--chat_max_tokens 256 \
--chat_logprobs 'True' \
--chat_timeout 20
Example 3: Diversify Y (vanilla) on MIT-Restaurant:
python scripts/generate_ner_sample.py \
--dataset_name 'mit-restaurant' \
--diversity_variant 'diversify-y-vanilla' \
--diversify_y_config 'reproduce/diversify-y/config/vanilla/mit_restaurant.json' \
--prompt_seed 42 \
--n_list 3 \
--n_call 600 \
--chat_model_name 'gpt-3.5-turbo-1106' \
--chat_max_tokens 256 \
--chat_logprobs 'True' \
--chat_timeout 20
Example 4: Diversify Y (latent) on MIT-Movie:
python scripts/generate_ner_sample.py \
--dataset_name 'mit-movie' \
--diversity_variant 'diversify-y-latent' \
--diversify_y_config 'reproduce/diversify-y/config/latent/mit_movie.json' \
--diversify_y_n_exp_entity 4.5 \
--prompt_seed 42 \
--n_list 3 \
--n_call 600 \
--chat_model_name 'gpt-3.5-turbo-1106' \
--chat_max_tokens 256 \
--chat_logprobs 'True' \
--chat_timeout 20
Example 5: Diversify X+Y on CoNLL-2003:
python scripts/generate_ner_sample.py \
--dataset_name 'conll2003-no-misc' \
--diversity_variant 'diversify-x+y' \
--diversify_x_config 'reproduce/diversify-x/config/conll2003_no_misc.json' \
--diversify_y_config 'reproduce/diversify-y/config/latent/conll2003_no_misc.json' \
--prompt_seed 42 \
--n_list 3 \
--n_call 600 \
--chat_model_name 'gpt-3.5-turbo-1106' \
--chat_max_tokens 256 \
--chat_logprobs 'True' \
--chat_timeout 20
Diversity arguments including diversify_x_config
, diversify_x_sample_prob
diversify_y_config
and diversify_y_n_exp_entity
are optional and will default to setups as reported in the paper (via loading from processed datasets in the generated_data
folder).
Step 4: Generate LLM Self-Corrections
For generating LLM Self-Corrections for entity annotations given a generated (and processed) NER dataset.
See generate_correction.py
Example: Self-Correction for a processed dataset (diversify-y-vanilla
) on MIT-Movie
python scripts/generate_correction.py \
--dataset_name 'mit-movie' \
--generated_dataset_dir_name 'reproduce/sample/dataset/mit_movie/24-02-06_Diversify-Y-vanilla' \
--correction_config 'reproduce/correction/config/mit_movie/Diverse-Y-vanilla.json' \
--output_postfix 'diversify-y-vanilla' \
--prompt_seed 42 \
--n_correct 3 \
--logprob_thresh=-2e-2 \
--top_n 0.2 \
--chat_model_name 'gpt-3.5-turbo-1106' \
--chat_max_tokens 256 \
--chat_temperature 0 \
--chat_timeout 30
Step 5: Downstream BERT Training
Includes training a BERT-class model with epoch-wise evaluation. See train.py
.
Example: Train a generated dataset (Diversify X) with self-correction for WikiGold:
python scripts/train.py \
--dataset_name 'wiki-gold-no-misc' \
--generated_dataset_dir_name 'reproduce/correction/dataset/wiki_gold_no_misc/24-02-11_Diversify-X' \
--few_shot_demo_file 'bio-train-1-shot-shuffled+neg.jsonl' \
--test_file 'bio-test-all.jsonl' \
--hf_model_name 'microsoft/deberta-v3-base' \
--learning_rate 4e-5 \
--n_epochs 16.0 \
--train_batch_size 24 \
--seed 42
To train with GPU, use:
CUDA_VISIBLE_DEVICES=<your-gpu-id> python scripts/train.py ...
Potential Support
Potential functionalities to support include
- Custom shuffle seed for different set of n-shot demo
- Customizable templates, including
- (1) diversity config generation, (2) data generation instruction and (3) diversity requirement