Awesome
Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion Generative Models
Code for "Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion Generative Models". Our pre-print can be found at https://arxiv.org/abs/2306.03284.
Setup
First, set up a Conda environment using conda env create -f conda_env.yml
.
Download the model checkpoints and fastMRI metadata from: https://drive.google.com/file/d/18n2QUN30qrBbM9rcxS3HIjIWImSbkJ-2/view?usp=sharing
Structure
- algorithms: algorithms for solving inverse problems
- configs: yaml config files for running experiments
- datasets: PyTorch dataset classes
- learners: the main control classes for gradient-based meta-learning
- problems: defines forward operators as classes for re-usability
- utils: useful functions for experiment logging, metrics, and losses
main.py
: program to invoke for running meta-learning from command line
How to run
Here is an example command for training and evaluating a sampling mask:
python3 main.py --config PATH_TO_CONFIG --doc NAME_OF_EXPERIMENT
Here is a command for evaluating a baseline mask on test data:
python3 main.py --config PATH_TO_CONFIG --doc NAME_OF_EXPERIMENT --baseline
Submodule initialization
git submodule update --init --recursive