Awesome
GraftNet: Towards Domain Generalized Stereo Matching with a Broad-Spectrum and Task-Oriented Feature
<img src="figure/figure.png" width="80%" height="60%">
Dependencies:
Datasets:
Training Steps:
1. Train A Basic Stereo Matching Network:
python train_baseline.py --data_path (your SceneFlow data folder)
2. Graft VGG's Feature and Train the Feature Adaptor:
python train_adaptor.py --data_path (your SceneFlow data folder)
3. Retrain the Cost Aggregation Module:
python retrain_CostAggregation.py --data_path (your SceneFlow data folder)
Evaluation:
Evaluate on KITTI:
python test_kitti.py --data_path (your KITTI training data folder) --load_path (the path of the final model)
Evaluate on Middlebury-H:
python test_middlebury.py --data_path (your Middlebury training data folder) --load_path (the path of the final model)
Evaluate on ETH3D:
python test_middlebury.py --data_path (your Middlebury training data folder) --load_path (the path of the final model)
Pretrained Models:
Google Drive