Home

Awesome

Deep Deterministic Policy Gradient

Warning: This repo is no longer maintained. For a more recent (and improved) implementation of DDPG see https://github.com/openai/baselines/tree/master/baselines/ddpg .

Paper: "Continuous control with deep reinforcement learning" - TP Lillicrap, JJ Hunt et al., 2015

<table> <tr> <td><img src="./readme/ipend.gif?raw=true" width="200"></td> <td><img src="./readme/reacher.gif?raw=true" width="200"></td> <td><img src="./readme/pend.gif?raw=true" width="200"></td> </tr> </table>

Installation

Install Gym and TensorFlow. Then:

pip install pyglet # required for gym rendering
pip install jupyter # required only for visualization (see below)

git clone https://github.com/SimonRamstedt/ddpg.git # get ddpg

Usage

Example:

python run.py --outdir ../ddpg-results/experiment1 --env InvertedDoublePendulum-v1

Enter python run.py -h to get a complete overview.

If you want to run in the cloud or a university cluster this might contain additional information.

Visualization

<img src="./readme/db.png" width="800">

Example:

python dashboard.py --exdir ../ddpg-results/+

Enter python dashboard.py -h to get a complete overview.

Known issues

Please write me or open a github issue if you encounter problems! Contributions are welcome!

Improvements beyond the original paper

Advaned Usage

Remote execution:

python run.py --outdir your_username@remotehost.edu:/some/remote/directory/+ --env InvertedDoublePendulum-v1