Awesome
SimMetrics
A Java library of similarity and distance metrics e.g. Levenshtein distance and Cosine similarity. All similarity metrics return normalized values rather than unbounded similarity scores. Distance metrics return non-negative unbounded scores.
Usage
For a quick and easy use StringMetrics and StringDistances contain a collection of well known similarity and distance metrics.
String str1 = "This is a sentence. It is made of words";
String str2 = "This sentence is similar. It has almost the same words";
StringMetric metric = StringMetrics.cosineSimilarity();
float result = metric.compare(str1, str2); //0.4767
The StringMetricBuilder and StringDistanceBuilder are convenience tools to build string similarity and distance metrics. Any class implementing Metric or Distance respectively can be used to build a metric. The builders support simplification, tokenization, token-filtering, token-transformation, and caching. For usage see the examples section.
For a terse syntax use import static org.simmetrics.builders.StringMetricBuilder.with;
String str1 = "This is a sentence. It is made of words";
String str2 = "This sentence is similar. It has almost the same words";
StringMetric metric =
with(new CosineSimilarity<String>())
.simplify(Simplifiers.toLowerCase(Locale.ENGLISH))
.simplify(Simplifiers.replaceNonWord())
.tokenize(Tokenizers.whitespace())
.build();
float result = metric.compare(str1, str2); //0.5720
Metrics that operate on lists, sets, or multisets are generic can be used to compare collections of arbitrary elements. The elements in the collection must implement equals and hashcode.
Set<Integer> scores1 = new HashSet<>(asList(1, 1, 2, 3, 5, 8, 11, 19));
Set<Integer> scores2 = new HashSet<>(asList(1, 2, 4, 8, 16, 32, 64));
SetMetric<Integer> metric = new OverlapCoefficient<>();
float result = metric.compare(scores1, scores2); // 0.4285
Unicode
Due to Java's Unicode Character Representations some care must be taken when using string metrics that compare strings using char values. Using for example Smith-Waterman on a texts written in Linear-A will result in an unexpectedly high similarity as every other char is the same high surrogate. Metrics that operate on lists, sets, or multisets such as Cosine Similarity are not affected.