Home

Awesome

Path Aggregation Network for Instance Segmentation

by Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, Jiaya Jia.

Introduction

This repository is for the CVPR 2018 Spotlight paper, 'Path Aggregation Network for Instance Segmentation', which ranked 1st place of COCO Instance Segmentation Challenge 2017 , 2nd place of COCO Detection Challenge 2017 (Team Name: UCenter) and 1st place of 2018 Scene Understanding Challenge for Autonomous Navigation in Unstructured Environments (Team Name: TUTU).

Citation

If PANet is useful for your research, please consider citing:

@inproceedings{liu2018path,
  author = {Shu Liu and
            Lu Qi and
            Haifang Qin and
            Jianping Shi and
            Jiaya Jia},
  title = {Path Aggregation Network for Instance Segmentation},
  booktitle = {Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year = {2018}
}

Disclaimer

Installation

For environment requirements, data preparation and compilation, please refer to Detectron.pytorch.

WARNING: pytorch 0.4.1 is broken, see https://github.com/pytorch/pytorch/issues/8483. Use pytorch 0.4.0

Usage

For training and testing, we keep the same as the one in Detectron.pytorch. To train and test PANet, simply use corresponding config files. For example, to train PANet on COCO:

python tools/train_net_step.py --dataset coco2017 --cfg configs/panet/e2e_panet_R-50-FPN_2x_mask.yaml

To evaluate the model, simply use:

python tools/test_net.py --dataset coco2017 --cfg configs/panet/e2e_panet_R-50-FPN_2x_mask.yaml --load_ckpt {path/to/your/checkpoint}

Main Results

BackboneTypeBatch SizeLR SchedulesBox APMask APDownload Links
R-50-PANet (paper)Faster161x39.2--
R-50-PANetFaster161x39.8-model
R-50-PANet-2fc (paper)Faster161x39.0--
R-50-PANet-2fcFaster161x39.6-model
R-50-PANet (paper)Mask162x42.137.8-
R-50-PANetMask162x43.138.3model

Results on COCO 20017 val subset produced by this repository. In our paper, we used Synchronized Batch Normalization following all parameter layers. While in this repository, we fix BN layers in the backbone and use GN layers in other part. With the same set of hyper-parameters, e.g., multi-scales, this repository can produce better performance than that in our origin paper. We expect a better performance with Synchronized Batch Normalization Layer.

Questions

Please contact 'liushuhust@gmail.com'