Home

Awesome

Geometric Back-projection Network for Point Cloud Classification

PWC
PWC
This repository is for Geometric Back-projection Network (GBNet) introduced in the following paper:
Geometric Back-projection Network for Point Cloud Classification
Shi Qiu, Saeed Anwar, Nick Barnes
IEEE Transactions on Multimedia (TMM), 2021

Paper and Citation

The paper can be downloaded from arXiv and IEEE.
If you find our paper/code is useful, please cite:

    @article{qiu2022geometric,
        title={Geometric Back-projection Network for Point Cloud Classification},
        author={Qiu, Shi and Anwar, Saeed and Barnes, Nick},
        journal={IEEE Transactions on Multimedia},
        year={2022},
        volume={24},
        pages={1943-1955},
        doi={10.1109/TMM.2021.3074240}
    }

Network Architecture

<p align="center"> <img width="900" src="https://github.com/ShiQiu0419/GBNet/blob/master/gbnet.png"> </p>

Updates

Implementation Platforms

ModelNet40 Experiment

Train the model:

python main.py --exp_name=gbnet_modelnet40 --model=gbnet --dataset=modelnet40

Test the pre-trained model:

python main.py --exp_name=gbnet_modelnet40_eval --model=gbnet --dataset=modelnet40 --eval=True --model_path=pretrained/gbnet_modelnet40.t7

ScanObjectNN Experiment

Train the model:

python main.py --exp_name=gbnet_scanobjectnn --model=gbnet --dataset=ScanObjectNN

Test the pre-trained model:

python main.py --exp_name=gbnet_scanobjectnn_eval --model=gbnet --dataset=ScanObjectNN --eval=True --model_path=pretrained/gbnet_scanobjectnn.t7

Pre-trained Models

ModelDataset#PointsData<br />AugmentationLossPerformance<br />on Test SetDownload<br />Link
GBNetModelNet401024random scaling<br />and translationcross-entropy<br />with label smoothingoverall accuracy: 93.80%<br />average class accuracy: 91.04%google drive
GBNetScanObjectNN1024random scaling<br />and translationcross-entropy<br />with label smoothingoverall accuracy: 80.99%<br />average class accuracy: 78.21%google drive

For more discussions regarding the factors that may affect point cloud classification,
please refer to the following paper:
Revisiting Point Cloud Classification with a Simple and Effective Baseline

Acknowledgement

The code is built on DGCNN. We thank the authors for sharing the codes.