Awesome
Accumulative Poisoning Attacks on Real-time data
The code for the paper 'Accumulative Poisoning Attacks on Real-time data'.
Environment settings and libraries we used in our experiments
This project is tested under the following environment settings:
- OS: Ubuntu 18.04.4
- GPU: Geforce 2080 Ti or Tesla P100
- Cuda: 10.1, Cudnn: v7.6
- Python: 3.6
- PyTorch: >= 1.6.0
- Torchvision: >= 0.6.0
Running commands
Burn-in phase
Below we provide running commands for burn-in phase
python train_cifar.py
Accumulative poisoning attacks in online learning cases
Below we provide running commands for accumulative phase + poisoned trigger(controlled by --use_advtrigger
) + online poisoned trigger (controlled by --use_online_advtrigger
):
python online_accu_train.py \
--batch_size 100 --epoch 100 --test_batch_size 500 --log_name log_test_online.txt\
--resume checkpoints_base_bn --use_bn --model_name epoch40.pth \
--mode 'eval' --onlinemode 'train' --lr 1e-1 --momentum 0.9 \
--beta 1. --only_reg --threshold 0.18 --use_advtrigger
Accumulative poisoning attacks in federated learning cases
Below we provide running commands for accumulative phase (controlled by --feder_lambda
, --epoch
) + poisoned trigger (controlled by --poisoned_trigger_step
):
python feder_accu_train.py \
--batch_size 100 --epoch 1000 --test_batch_size 500 --log_name log_test_feder.txt\
--resume checkpoints_base_bn --use_bn --model_name epoch40.pth \
--mode 'train' --onlinemode 'train' --feder_lambda 8e-2 --lr 1e-1 --momentum 0.9 \
--poisoned_trigger_step 0.01 \
--clip_gradnorm --clipvalue 10
Here we also activate the gradient norm clipping operations by the FLAGs --clip_gradnorm
and --clipvalue
.