Home

Awesome

Introduction

This is the implementation of Kim's Convolutional Neural Networks for Sentence Classification paper in PyTorch.

  1. Kim's implementation of the model in Theano: https://github.com/yoonkim/CNN_sentence
  2. Denny Britz has an implementation in Tensorflow: https://github.com/dennybritz/cnn-text-classification-tf
  3. Alexander Rakhlin's implementation in Keras; https://github.com/alexander-rakhlin/CNN-for-Sentence-Classification-in-Keras

Requirement

Result

I just tried two dataset, MR and SST.

DatasetClass SizeBest ResultKim's Paper Result
MR277.5%(CNN-rand-static)76.1%(CNN-rand-nostatic)
SST537.2%(CNN-rand-static)45.0%(CNN-rand-nostatic)

I haven't adjusted the hyper-parameters for SST seriously.

Usage

./main.py -h

or

python3 main.py -h

You will get:

CNN text classificer

optional arguments:
  -h, --help            show this help message and exit
  -batch-size N         batch size for training [default: 50]
  -lr LR                initial learning rate [default: 0.01]
  -epochs N             number of epochs for train [default: 10]
  -dropout              the probability for dropout [default: 0.5]
  -max_norm MAX_NORM    l2 constraint of parameters
  -cpu                  disable the gpu
  -device DEVICE        device to use for iterate data
  -embed-dim EMBED_DIM
  -static               fix the embedding
  -kernel-sizes KERNEL_SIZES
                        Comma-separated kernel size to use for convolution
  -kernel-num KERNEL_NUM
                        number of each kind of kernel
  -class-num CLASS_NUM  number of class
  -shuffle              shuffle the data every epoch
  -num-workers NUM_WORKERS
                        how many subprocesses to use for data loading
                        [default: 0]
  -log-interval LOG_INTERVAL
                        how many batches to wait before logging training
                        status
  -test-interval TEST_INTERVAL
                        how many epochs to wait before testing
  -save-interval SAVE_INTERVAL
                        how many epochs to wait before saving
  -predict PREDICT      predict the sentence given
  -snapshot SNAPSHOT    filename of model snapshot [default: None]
  -save-dir SAVE_DIR    where to save the checkpoint

Train

./main.py

You will get:

Batch[100] - loss: 0.655424  acc: 59.3750%
Evaluation - loss: 0.672396  acc: 57.6923%(615/1066) 

Test

If you has construct you test set, you make testing like:

/main.py -test -snapshot="./snapshot/2017-02-11_15-50-53/snapshot_steps1500.pt

The snapshot option means where your model load from. If you don't assign it, the model will start from scratch.

Predict

Your text must be separated by space, even punctuation.And, your text should longer then the max kernel size.

Reference