Home

Awesome

DeepRL

If you have any question or want to report a bug, please open an issue instead of emailing me directly.

Modularized implementation of popular deep RL algorithms in PyTorch.
Easy switch between toy tasks and challenging games.

Implemented algorithms:

The DQN agent, as well as C51 and QR-DQN, has an asynchronous actor for data generation and an asynchronous replay buffer for transferring data to GPU. Using 1 RTX 2080 Ti and 3 threads, the DQN agent runs for 10M steps (40M frames, 2.5M gradient updates) for Breakout within 6 hours.

Dependency

Usage

examples.py contains examples for all the implemented algorithms.
Dockerfile contains the environment for generating the curves below.
Please use this bibtex if you want to cite this repo

@misc{deeprl,
  author = {Zhang, Shangtong},
  title = {Modularized Implementation of Deep RL Algorithms in PyTorch},
  year = {2018},
  publisher = {GitHub},
  journal = {GitHub Repository},
  howpublished = {\url{https://github.com/ShangtongZhang/DeepRL}},
}

Curves (commit 9e811e)

BreakoutNoFrameskip-v4 (1 run)

Loading...

Mujoco

References

Code of My Papers

They are located in other branches of this repo and seem to be good examples for using this codebase.