Awesome
DM-Count
Official Pytorch implementation of the paper Distribution Matching for Crowd Counting (NeurIPS, spotlight).
We propose to use Distribution Matching for crowd COUNTing (DM-Count). In DM-Count, we use Optimal Transport (OT) to measure the similarity between the normalized predicted density map and the normalized ground truth density map. To stabilize OT computation, we include a Total Variation loss in our model. We show that the generalization error bound of DM-Count is tighter than that of the Gaussian smoothed methods. Empirically, our method outperforms the state-of-the-art methods by a large margin on four challenging crowd counting datasets: UCF-QNRF, NWPU, ShanghaiTech, and UCF-CC50.
Prerequisites
Python 3.x
Pytorch >= 1.2
For other libraries, check requirements.txt.
Getting Started
- Dataset download
-
QNRF can be downloaded here
-
NWPU can be downloaded here
-
Shanghai Tech Part A and Part B can be downloaded here
- Data preprocess
Due to large sizes of images in QNRF and NWPU datasets, we preprocess these two datasets.
python preprocess_dataset.py --dataset <dataset name: qnrf or nwpu> --input-dataset-path <original data directory> --output-dataset-path <processed data directory>
- Training
Here is a kaggle notebook for a quickstart. The interface is like this;
usage: train.py [-h] [--load-args LOAD_ARGS] [--data-path DATA_PATH] [--dataset {qnrf,nwpu,sha,shb}]
[--out-path OUT_PATH] [--lr LR] [--weight-decay WEIGHT_DECAY] [--resume RESUME]
[--auto-resume] [--max-epoch MAX_EPOCH] [--val-epoch VAL_EPOCH] [--val-start VAL_START]
[--batch-size BATCH_SIZE] [--device DEVICE] [--num-workers NUM_WORKERS] [--wot WOT]
[--wtv WTV] [--reg REG] [--num-of-iter-in-ot NUM_OF_ITER_IN_OT] [--norm-cood NORM_COOD]
Train
optional arguments:
-h, --help show this help message and exit
--load-args LOAD_ARGS
file to read program args from. Will ignore other parameters if specified
--data-path DATA_PATH
dataset path
--dataset {qnrf,nwpu,sha,shb}
dataset name
--out-path OUT_PATH place to save checkpoints and models.
--lr LR initial learning rate
--weight-decay WEIGHT_DECAY
the weight decay
--resume RESUME state dict to resume from. If specified as empty will start over
--auto-resume if set will try to find most recent checkpoint in 'out_path'
--max-epoch MAX_EPOCH
max training epoch
--val-epoch VAL_EPOCH
the num of steps to log training information
--val-start VAL_START
the epoch start to val
--batch-size BATCH_SIZE
train batch size
--device DEVICE assign device
--num-workers NUM_WORKERS
the num of training process
--wot WOT weight on OT loss
--wtv WTV weight on TV loss
--reg REG entropy regularization in sinkhorn
--num-of-iter-in-ot NUM_OF_ITER_IN_OT
sinkhorn iterations
--norm-cood NORM_COOD
Whether to norm cood when computing distance
Training can be done two ways;
python train.py --dataset <dataset name: qnrf, sha, shb or nwpu> --data-path <path to dataset> --device <gpu device id>
or from a desired .json file like args.json in the repository for example;
python train.py --load-args args.json
When this option is specified other given option from the terminal will be ignored. Some default configurations specific to the selected dataset can be changed from datasets/dataset_cfg.json file.
To directly run it with default arguments
make sure you select these correctly;
from args.json file;
..
"train":{
...
"dataset":<dataset name>
...
}
..
and from datasets/dataset_cfg.json;
{
..
...
"dataset_paths":{
"<dataset name>":{
"data_path":"<dataset root path>", <-- this is important
other attributes are generally the default
},
...
}
..
}
- Test
The interface is like this;
usage: test.py [-h] [--load-args LOAD_ARGS] [--device DEVICE] [--model-path MODEL_PATH]
[--data-path DATA_PATH] [--dataset {qnrf,nwpu,sha,shb}]
[--pred-density-map-path PRED_DENSITY_MAP_PATH]
Test
optional arguments:
-h, --help show this help message and exit
--load-args LOAD_ARGS
file to read program args from. Will ignore other parameters if specified
--device DEVICE assign device
--model-path MODEL_PATH
saved model path
--data-path DATA_PATH
dataset path
--dataset {qnrf,nwpu,sha,shb}
dataset name
--pred-density-map-path PRED_DENSITY_MAP_PATH
save predicted density maps when pred-density-map-path is not empty.
python test.py --model-path <path of the model to be evaluated> --data-path <directory for the dataset> --dataset <dataset name: qnrf, sha, shb or nwpu>
The same applies here you can also use args.json file to load like this;
python test.py --load-args args.json
Pretrained models
Pretrained models on UCF-QNRF, NWPU, Shanghaitech part A and B can be found in pretrained_models folder or Google Drive
References
If you find this work or code useful, please cite:
@inproceedings{wang2020DMCount,
title={Distribution Matching for Crowd Counting},
author={Boyu Wang and Huidong Liu and Dimitris Samaras and Minh Hoai},
booktitle={Advances in Neural Information Processing Systems},
year={2020},
}