Home

Awesome

Version Python version License Documentation Status

Tempo: The MLOps Software Development Kit

Documentation

An open source Python SDK to allow data scientists to test and deploy machine learning inference pipelines.

Highlights

Tempo provides a unified interface to multiple MLOps projects that enable data scientists to deploy and productionise machine learning systems.

Workflow

  1. Develop locally.
  2. Test locally on Docker with production artifacts.
  3. Push artifacts to remote bucket store and launch remotely (on Kubernetes).

overview

Motivating Synopsis

Data scientists can easily test their models and orchestrate them with pipelines.

Below we see two Models (sklearn and xgboost) with a function decorated pipeline to call both.

def get_tempo_artifacts(artifacts_folder: str) -> Tuple[Pipeline, Model, Model]:

    sklearn_model = Model(
        name="test-iris-sklearn",
        platform=ModelFramework.SKLearn,
        local_folder=f"{artifacts_folder}/{SKLearnFolder}",
        uri="s3://tempo/basic/sklearn",
    )

    xgboost_model = Model(
        name="test-iris-xgboost",
        platform=ModelFramework.XGBoost,
        local_folder=f"{artifacts_folder}/{XGBoostFolder}",
        uri="s3://tempo/basic/xgboost",
    )

    @pipeline(
        name="classifier",
        uri="s3://tempo/basic/pipeline",
        local_folder=f"{artifacts_folder}/{PipelineFolder}",
        models=PipelineModels(sklearn=sklearn_model, xgboost=xgboost_model),
    )
    def classifier(payload: np.ndarray) -> Tuple[np.ndarray, str]:
        res1 = classifier.models.sklearn(input=payload)

        if res1[0] == 1:
            return res1, SKLearnTag
        else:
            return classifier.models.xgboost(input=payload), XGBoostTag

    return classifier, sklearn_model, xgboost_model

Save the pipeline code.

from tempo.serve.loader import save
save(classifier)

Deploy locally to docker.

from tempo import deploy_local
remote_model = deploy_local(classifier)

Make predictions on containerized servers that would be used in production.

remote_model.predict(np.array([[1, 2, 3, 4]]))

Deploy to Kubernetes for production.

from tempo.serve.metadata import SeldonCoreOptions
from tempo import deploy_remote

runtime_options = SeldonCoreOptions(**{
    "remote_options": {
        "namespace": "production",
        "authSecretName": "minio-secret"
    }
})	
remote_model = deploy_remote(classifier, options=runtime_options)

This is an extract from the multi-model introduction demo.