Awesome
NeurIPS 2018: AI for Prosthetics Challenge – 3rd place solution
Attention
git clone --recursive git@github.com:scitator/neurips-18-prosthetics-challenge.git
How2run
-
System requirements – redis and Anaconda
sudo apt install redis-server
-
Python requirements
conda create -n opensim-rl -c kidzik opensim python=3.6.1 activate opensim-rl source activate opensim-rl conda install -c conda-forge lapack git conda install pytorch torchvision -c pytorch pip install git+https://github.com/stanfordnmbl/osim-rl.git pip install git+https://github.com/pytorch/tnt.git@master pip install pyaml tensorboardX jpeg4py albumentations
-
Mujoco example
For installation issues follow official guide.
redis-server --port 12000 export GPUS="" CUDA_VISIBLE_DEVICES="$GPUS" PYTHONPATH=. \ python rl/offpolicy/scripts/run_trainer.py \ --config=experiments/mujoco/ecritic_quantile.yml CUDA_VISIBLE_DEVICES="" PYTHONPATH=. \ python rl/offpolicy/scripts/run_samplers.py \ --config=experiments/mujoco/ecritic_quantile.yml CUDA_VISIBLE_DEVICE="" tensorboard \ --logdir=./experiments/logs
-
L2R example – ensemble training
-
Redis
redis-server --port 13131
-
FC
export GPUS="" CUDA_VISIBLE_DEVICES="$GPUS" PYTHONPATH=. \ python catalyst/rl/offpolicy/scripts/run_trainer.py \ --config=experiments/prosthetics/ecritic_quantile_fc.yml CUDA_VISIBLE_DEVICES="" PYTHONPATH=. \ python catalyst/rl/offpolicy/scripts/run_samplers.py \ --config=experiments/prosthetics/ecritic_quantile_fc.yml
-
LAMA
export GPUS="" CUDA_VISIBLE_DEVICES="$GPUS" PYTHONPATH=. \ python catalyst/rl/offpolicy/scripts/run_trainer.py \ --config=experiments/prosthetics/ecritic_quantile_lama.yml CUDA_VISIBLE_DEVICES="" PYTHONPATH=. \ python catalyst/rl/offpolicy/scripts/run_samplers.py \ --config=experiments/prosthetics/ecritic_quantile_lama.yml
-
Monitoring
CUDA_VISIBLE_DEVICE="" tensorboard \ --logdir=./experiments/logs
-
-
L2R submit test
bash ./submit/run.sh
Additional links
Citation
Please cite the following paper if you feel this repository useful.
@article{catalyst_rl,
title={Catalyst.RL: A Distributed Framework for Reproducible RL Research},
author = {Kolesnikov, Sergey and Hrinchuk, Oleksii},
journal={arXiv preprint arXiv:1903.00027},
year={2019}
}