Awesome
RED_CNN
Implementation of Low-Dose CT with a Residual Encoder-Decoder Convolutional Neural Network (RED-CNN)
<img src="https://github.com/SSinyu/RED_CNN/blob/master/img/redcnn.PNG" width="550"/>There is several things different from the original paper.
- The input image patch(64x64 size) is extracted randomly from the 512x512 size image. --> Original : Extract patches at regular intervals from the entire image.
- use Adam optimizer
DATASET
The 2016 NIH-AAPM-Mayo Clinic Low Dose CT Grand Challenge by Mayo Clinic
(I can't share this data, you should ask at the URL below if you want)
https://www.aapm.org/GrandChallenge/LowDoseCT/
The data_path
should look like:
data_path
├── L067
│ ├── quarter_3mm
│ │ ├── L067_QD_3_1.CT.0004.0001 ~ .IMA
│ │ ├── L067_QD_3_1.CT.0004.0002 ~ .IMA
│ │ └── ...
│ └── full_3mm
│ ├── L067_FD_3_1.CT.0004.0001 ~ .IMA
│ ├── L067_FD_3_1.CT.0004.0002 ~ .IMA
│ └── ...
├── L096
│ ├── quarter_3mm
│ │ └── ...
│ └── full_3mm
│ └── ...
...
│
└── L506
├── quarter_3mm
│ └── ...
└── full_3mm
└── ...
Use
Check the arguments.
- run
python prep.py
to convert 'dicom file' to 'numpy array' - run
python main.py --load_mode=0
to training. If the available memory(RAM) is more than 10GB, it is faster to run--load_mode=1
. - run
python main.py --mode='test' --test_iters=100000
to test.