Awesome
Retrieval-Robust-to-Object-Motion-Blur
Description
Pytorch code for paper: Retrieval Robust to Object Motion Blur
Accepted by <strong><em>ECCV 2024</em></strong>
Rong Zou, Marc Pollefeys and Denys Rozumnyi
Installation
The code is tested with Python 3.8.16.
Install this repository using the following commands:
# Clone the repository
git clone https://github.com/Rong-Zou/Retrieval-Robust-to-Object-Motion-Blur.git
# Change to the project directory
cd Retrieval-Robust-to-Object-Motion-Blur
# Install dependencies
pip install -r requirements.txt
Data Preparation
Download dataset zips from this link, and extract the data.
You may use the following commands:
# Download the dataset
wget https://cvg-data.inf.ethz.ch/romb/real_data.zip
wget https://cvg-data.inf.ethz.ch/romb/synthetic_data.zip
wget https://cvg-data.inf.ethz.ch/romb/synthetic_data_distractors.zip
# Unzip the dataset to ./data/, change the target path to your desired directory
unzip real_data.zip -d data/
unzip synthetic_data.zip -d data/
unzip synthetic_data_distractors.zip -d data/
See the dataset page for more details.
Pretrained Model
Download our pre-trained model from this link.
For testing, put the model in the directory same as the link file.
Testing
First modify the parameter values in the set_data_dirs.py
script to configure the correct directories.
Test the model by running the testing script test.py
:
python3 test.py
License
This project is licensed under the MIT License.
Citation
@inproceedings{blur_retrieval,
author = {Rong Zou and Marc Pollefeys and Denys Rozumnyi},
title = {Retrieval Robust to Object Motion Blur},
booktitle = {European Conference on Computer Vision (ECCV)},
year = {2024}
}