Home

Awesome

Res2Net for Panoptic Segmentation based on detectron2.

Introduction

We propose a novel building block for CNNs, namely Res2Net, by constructing hierarchical residual-like connections within one single residual block. The Res2Net represents multi-scale features at a granular level and increases the range of receptive fields for each network layer.

Performance on COCO dataset

<table><tbody> <!-- START TABLE --> <!-- TABLE HEADER --> <th valign="bottom">Name</th> <th valign="bottom">lr<br/>sched</th> <th valign="bottom">train<br/>mem<br/>(GB)</th> <th valign="bottom">box<br/>AP</th> <th valign="bottom">mask<br/>AP</th> <th valign="bottom">PQ</th> <th valign="bottom">download</th> <!-- TABLE BODY --> <!-- ROW: panoptic_fpn_R_50_1x --> <tr><td align="left"><a href="configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x.yaml">R50-FPN</a></td> <td align="center">1x</td> <td align="center">4.8</td> <td align="center">37.6</td> <td align="center">34.7</td> <td align="center">39.4</td> <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x/139514544/model_final_dbfeb4.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x/139514544/metrics.json">metrics</a></td> </tr> <!-- ROW: panoptic_fpn_R_50_3x --> <tr><td align="left"><a href="configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x.yaml">R50-FPN</a></td> <td align="center">3x</td> <td align="center">4.8</td> <td align="center">40.0</td> <td align="center">36.5</td> <td align="center">41.5</td> <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x/139514569/model_final_c10459.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x/139514569/metrics.json">metrics</a></td> </tr> <!-- ROW: panoptic_fpn_R_101_3x --> <tr><td align="left"><a href="configs/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml">R101-FPN</a></td> <td align="center">3x</td> <td align="center">6.0</td> <td align="center">42.4</td> <td align="center">38.5</td> <td align="center">43.0</td> <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x/139514519/model_final_cafdb1.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x/139514519/metrics.json">metrics</a></td> </tr> <!-- ROW: panoptic_fpn_R2_101_3x --> <tr><td align="left"><a href="configs/COCO-PanopticSegmentation/panoptic_fpn_R2_101_3x.yaml">Res2Net101-FPN</a></td> <td align="center">3x</td> <td align="center">6.0</td> <td align="center">44.0</td> <td align="center">39.6</td> <td align="center">44.5</td> <td align="center"><a href="https://mailnankaieducn-my.sharepoint.com/:u:/g/personal/shgao_mail_nankai_edu_cn/EU024RDiIxtJs2xz2zl_7bkBRXiPFcRukFLcB4gVYxzasw?e=PHU5jk">model</a>&nbsp;|&nbsp;<a href="results/panoptic_seg_res2net101_fpn_x3.txt">metrics</a></td> </tr> </tbody></table>

Usage

./tools/train_net.py --num-gpus 8 --config-file configs/COCO-PanopticSegmentation/panoptic_fpn_R2_101_3x.yaml

Citation

If you find this work or code is helpful in your research, please cite:

@article{gao2019res2net,
  title={Res2Net: A New Multi-scale Backbone Architecture},
  author={Gao, Shang-Hua and Cheng, Ming-Ming and Zhao, Kai and Zhang, Xin-Yu and Yang, Ming-Hsuan and Torr, Philip},
  journal={IEEE TPAMI},
  year={2020},
  doi={10.1109/TPAMI.2019.2938758}, 
}

For more details of detectron2, please refer to the detectron2 repo.

<img src=".github/Detectron2-Logo-Horz.svg" width="300" >

Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up rewrite of the previous version, Detectron, and it originates from maskrcnn-benchmark.

<div align="center"> <img src="https://user-images.githubusercontent.com/1381301/66535560-d3422200-eace-11e9-9123-5535d469db19.png"/> </div>

What's New

See our blog post to see more demos and learn about detectron2.

Installation

See INSTALL.md.

Quick Start

See GETTING_STARTED.md, or the Colab Notebook.

Learn more at our documentation. And see projects/ for some projects that are built on top of detectron2.

Model Zoo and Baselines

We provide a large set of baseline results and trained models available for download in the Detectron2 Model Zoo.

License

Detectron2 is released under the Apache 2.0 license.

Citing Detectron2

If you use Detectron2 in your research or wish to refer to the baseline results published in the Model Zoo, please use the following BibTeX entry.

@misc{wu2019detectron2,
  author =       {Yuxin Wu and Alexander Kirillov and Francisco Massa and
                  Wan-Yen Lo and Ross Girshick},
  title =        {Detectron2},
  howpublished = {\url{https://github.com/facebookresearch/detectron2}},
  year =         {2019}
}