Awesome
GearNet
AAAI 2022: GearNet: Stepwise Dual Learning for Weakly Supervised Domain Adaptation. (Pytorch implementation)
Requirements
- Python 3.8.3
- PyTorch 1.6.0
Taining
All the commands are shown in scripts
files.
Results
UNIF-20% | A -> W | A -> D | W -> A | W -> D | D -> A | D -> W | Average |
---|---|---|---|---|---|---|---|
Standard | 0.6197 | 0.6312 | 0.4861 | 0.9229 | 0.3164 | 0.8085 | 0.6308 |
Co-teaching | 0.6158 | 0.6791 | 0.5614 | 0.9437 | 0.5482 | 0.845 | 0.6988 |
Jocor | 0.6653 | 0.7416 | 0.5237 | 0.9770 | 0.5028 | 0.9036 | 0.7190 |
DAN | 0.7031 | 0.7187 | 0.5809 | 0.9562 | 0.6299 | 0.9127 | 0.7502 |
DANN | 0.7122 | 0.7500 | 0.6093 | 0.9687 | 0.6157 | 0.9270 | 0.7638 |
TCL | 0.7773 | 0.8166 | 0.6075 | 0.9812 | 0.6100 | 0.9361 | 0.7881 |
G+Co-teaching | 0.7343 | 0.7791 | 0.6058 | 0.9500 | 0.6051 | 0.9036 | 0.7629 |
G+DANN | 0.7552 | 0.7916 | 0.6175 | 0.9729 | 0.6139 | 0.9361 | 0.7812 |
G+TCL | 0.8177 | 0.8437 | 0.6168 | 0.9875 | 0.6225 | 0.9518 | 0.8066 |
UNIF-40% | A -> W | A -> D | W -> A | W -> D | D -> A | D -> W | Average |
---|---|---|---|---|---|---|---|
Standard | 0.5585 | 0.5833 | 0.4098 | 0.8145 | 0.3870 | 0.7330 | 0.5810 |
Co-teaching | 0.5937 | 0.6583 | 0.4971 | 0.8500 | 0.3338 | 0.5598 | 0.5821 |
Jocor | 0.6302 | 0.6625 | 0.4723 | 0.9562 | 0.4524 | 0.8307 | 0.6673 |
DAN | 0.6380 | 0.6708 | 0.5071 | 0.8916 | 0.5951 | 0.8971 | 0.6999 |
DANN | 0.6731 | 0.7062 | 0.5223 | 0.9250 | 0.5696 | 0.8893 | 0.7142 |
TCL | 0.7656 | 0.7562 | 0.5106 | 0.9437 | 0.5600 | 0.8880 | 0.7373 |
G+Co-teaching | 0.6979 | 0.7250 | 0.5507 | 0.8583 | 0.3465 | 0.5833 | 0.6269 |
G+DANN | 0.7434 | 0.7229 | 0.5326 | 0.9500 | 0.5742 | 0.9049 | 0.7380 |
G+TCL | 0.7968 | 0.7916 | 0.4907 | 0.9458 | 0.5312 | 0.9322 | 0.7480 |
Flip-20% | A -> W | A -> D | W -> A | W -> D | D -> A | D -> W | Average |
---|---|---|---|---|---|---|---|
Standard | 0.6015 | 0.6187 | 0.4421 | 0.9062 | 0.4005 | 0.7929 | 0.6269 |
Co-teaching | 0.6054 | 0.6187 | 0.5191 | 0.8625 | 0.4609 | 0.7070 | 0.6289 |
Jocor | 0.6484 | 0.6937 | 0.4847 | 0.8541 | 0.3469 | 0.7421 | 0.6283 |
DAN | 0.6614 | 0.677 | 0.5500 | 0.8812 | 0.5802 | 0.8710 | 0.7034 |
DANN | 0.6601 | 0.6541 | 0.5312 | 0.877 | 0.5717 | 0.8645 | 0.6931 |
TCL | 0.7526 | 0.7833 | 0.5767 | 0.9229 | 0.6029 | 0.9322 | 0.76176 |
G+Co-teaching | 0.7473 | 0.6791 | 0.5671 | 0.8770 | 0.4989 | 0.763 | 0.6887 |
G+DANN | 0.7265 | 0.7312 | 0.5539 | 0.8854 | 0.5951 | 0.8945 | 0.7311 |
G+TCL | 0.8776 | 0.8291 | 0.5873 | 0.9395 | 0.6072 | 0.9479 | 0.7981 |
Flip-40% | A -> W | A -> D | W -> A | W -> D | D -> A | D -> W | Average |
---|---|---|---|---|---|---|---|
Standard | 0.4687 | 0.4812 | 0.3547 | 0.7208 | 0.3504 | 0.6328 | 0.5014 |
Co-teaching | 0.5039 | 0.525 | 0.3615 | 0.5729 | 0.2929 | 0.4257 | 0.4469 |
Jocor | 0.5429 | 0.602 | 0.4595 | 0.7125 | 0.3892 | 0.6914 | 0.5662 |
DAN | 0.5312 | 0.5458 | 0.4218 | 0.7187 | 0.4353 | 0.6679 | 0.5534 |
DANN | 0.5143 | 0.5062 | 0.4232 | 0.6937 | 0.4222 | 0.6757 | 0.5392 |
TCL | 0.6601 | 0.6166 | 0.4595 | 0.7625 | 0.4335 | 0.6497 | 0.5969 |
G+Co-teaching | 0.5742 | 0.5104 | 0.3806 | 0.5666 | 0.3164 | 0.4283 | 0.4627 |
G+DANN | 0.5494 | 0.5208 | 0.4261 | 0.7354 | 0.4375 | 0.6731 | 0.5570 |
G+TCL | 0.6992 | 0.6270 | 0.4630 | 0.7541 | 0.4225 | 0.6601 | 0.6043 |
Citation
If you find this useful in your research, please consider citing:
@article{xie2022gearnet,
title={GearNet: Stepwise Dual Learning for Weakly Supervised Domain Adaptation},
author={Xie, Renchunzi and Wei, Hongxin and Feng, Lei and An, Bo},
journal={AAAI},
year={2022}
}
Contact
If you have any problems about our code, feel free to contact<br>
or describe your problem in Issues.