Awesome
Self-Supervised Correction Learning for Semi-Supervised Biomedical Image Segmentation
Introduction
This repository contains the PyTorch implementation of:
Self-Supervised Correction Learning for Semi-Supervised Biomedical Image Segmentation, MICCAI 2021.
Requirements
- torch
- torchvision
- tqdm
- opencv
- scipy
- skimage
- PIL
- numpy
Usage
1. Training
python main.py --mode train --manner semi --ratio 2
--root {project_path} --dataset polyp --polyp {data_path}
2. Inference
python main.py --mode test --manner test --load_ckpt checkpoint
--root {project_path} --dataset polyp --polyp {data_path}
Citation
If you feel this work is helpful, please cite our paper
@inproceedings{zhang2021self,
title={Self-supervised Correction Learning for Semi-supervised Biomedical Image Segmentation},
author={Zhang, Ruifei and Liu, Sishuo and Yu, Yizhou and Li, Guanbin},
booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},
pages={134--144},
year={2021},
organization={Springer}
}