Awesome
ReID_extra_testdata
Sample Input
This repository stores the example input of the ReID sample in https://github.com/ReID-Team/opencv/tree/sample_person_reid
Baseline Model
Following link store several state-of-the-art baseline models from Tencent Youtu Lab.
Download Link
Model Performance
Model | Market1501(mAP/rank-1) | DukeMTMC(mAP/rank-1) | MSMT17(mAP/rank-1) |
---|---|---|---|
youtu_reid_baseline_lite | 87.86/95.01 | 79.75/89.05 | 58.82/80.81 |
youtu_reid_baseline_medium | 90.75/96.32 | 83.38/91.56 | 65.30/85.08 |
youtu_reid_baseline_large | 91.85/96.73 | 84.40/91.88 | 68.68/87.04 |
Reference
Following datasets are used for the baseline training:
Market1501
@inproceedings{zheng2015scalable,
title={Scalable person re-identification: A benchmark},
author={Zheng, Liang and Shen, Liyue and Tian, Lu and Wang, Shengjin and Wang, Jingdong and Tian, Qi},
booktitle={Proceedings of the IEEE international conference on computer vision},
pages={1116--1124},
year={2015}
}
DukeMTMC
@inproceedings{ristani2016performance,
title={Performance measures and a data set for multi-target, multi-camera tracking},
author={Ristani, Ergys and Solera, Francesco and Zou, Roger and Cucchiara, Rita and Tomasi, Carlo},
booktitle={European Conference on Computer Vision},
pages={17--35},
year={2016},
organization={Springer}
}
CHUK03
@inproceedings{li2014deepreid,
title={DeepReID: Deep Filter Pairing Neural Network for Person Re-identification},
author={Li, Wei and Zhao, Rui and Xiao, Tong and Wang, Xiaogang},
booktitle={CVPR},
year={2014}
}
MSMT17
@inproceedings{wei2018person,
title={Person transfer gan to bridge domain gap for person re-identification},
author={Wei, Longhui and Zhang, Shiliang and Gao, Wen and Tian, Qi},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={79--88},
year={2018}
}