Awesome
HAGEN: Homophily-Aware Graph Convolutional Recurrent Network for Crime Forecasting
This is a PyTorch implementation of HAGEN: Homophily-Aware Graph Convolutional Recurrent Network for Crime Forecasting.
Contact Update
Feel free to contact us if you have any questions related to our work:
Chenyu Wang: chenyuwang.monica@gmail.com Zongyu Lin: lzyxx17@gmail.com
Requirements
- scipy>=0.19.0
- numpy>=1.12.1
- pandas>=0.19.2
- pyyaml
- statsmodels
- torch
- tables
- future
- sklearn
Dependency can be installed using the following command:
pip install -r requirements.txt
Model Training
Here are commands for training the model on LA
.
python hagen_train.py --config_filename ./crime-data/CRIME-LA/la_crime_9.yaml --month 9
Experimental settings and some supplemental results can be referred to HAGEN_suppl.pdf
.
Citation
Please cite us if it is useful in your work:
@inproceedings{wang2022hagen,
title={Hagen: Homophily-aware graph convolutional recurrent network for crime forecasting},
author={Wang, Chenyu and Lin, Zongyu and Yang, Xiaochen and Sun, Jiao and Yue, Mingxuan and Shahabi, Cyrus},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={36},
number={4},
pages={4193--4200},
year={2022}
}