Awesome
Reasoning on Graphs (RoG)
Official Implementation of "Reasoning on Graphs: Faithful and Interpretable Large Language Model Reasoning".
<img src="resources/rog.png" width = "800" />Reasoning on graphs (RoG) synergizes LLMs with KGs to enable faithful and interpretable reasoning. We present a planning-retrieval-reasoning framework, where RoG first generates relation paths grounded by KGs as faithful plans. These plans are then used to retrieve valid reasoning paths from the KGs for LLMs to conduct faithful reasoning and generate interpretable results.
News 🎉
Check out our latest work on KG + LLM reasoning: Graph-constrained Reasoning
Requirements
pip install -r requirements.txt
Pre-trained weights
Our code will automatically download the model weight from the huggingface.
You can find the pre-trained weights here.
Datasets
<details> <summary>Subgraph Extraction</summary>Our code will automatically download the data from the huggingface.
We extract the subgraphs from the Freebase following previous studies. The code can be found here.
</details>Inference
Requirements: Any GPU with at least 12GB memory.
Step1: Planning (Generate relation paths)
Run: ./scripts/planning.sh
python src/qa_prediction/gen_rule_path.py \
--model_name RoG \
--model_path rmanluo/RoG \
-d {RoG-webqsp,RoG-cwq} \
--split test \
--n_beam 3
Generated rules will be saved at: results/gen_rule_path/{dataset}/{model_name}/{split}
Step2: Reasoning (Generate answers with RoG)
Run: ./scripts/rog-reasoning.sh
python src/qa_prediction/predict_answer.py \
--model_name RoG \
--model_path rmanluo/RoG \
-d {RoG-webqsp,RoG-cwq} \
--prompt_path prompts/llama2_predict.txt \
--add_rul \
--rule_path {rule_path} \
Answers will be saved at: results/KGQA/{dataset}/{model_name}/{split}
Plug-and-play Reasoning (Generate answers with different LLMs)
Note: you need to set your openai key at
.env
to use ChatGPT.
Run: ./scripts/plug-and-play.sh
python src/qa_prediction/predict_answer.py \
--model_name {gpt-3.5-turbo,alpaca,llama2-chat-hf,flan-t5} \
-d {RoG-webqsp,RoG-cwq} \
--prompt_path {prompt_path} \
--add_rule \
--rule_path {rule_path}
Interpretable Reasoning
Run: python scripts/interpretable_example.py
from transformers import pipeline, AutoTokenizer
import torch
MODEL_PATH_OR_NAME="rmanluo/RoG"
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH_OR_NAME, use_fast=False)
model = pipeline("text-generation", model=MODEL_PATH_OR_NAME, tokenizer=tokenizer, device_map="auto", torch_dtype=torch.float16)
print("====EXAMPLE 1: ====")
INPUT_TEXT_1 = """Based on the reasoning paths, please answer the given question and explain why
Reasoning Paths:
Northern District -> location.administrative_division.first_level_division_of -> Israel -> government.form_of_government.countries -> Parliamentary system
Question:
What type of government is used in the country with Northern District?"""
outputs = model(INPUT_TEXT_1, return_full_text=False)
print(outputs[0]['generated_text'])
Training
Training Datasets
You can download the processed datasets from RoG_train_data.tar.tz. Unzip the files and put them under datasets/
folder.
- Build question to relation path pairs.
python src/align_kg/build_align_qa_dataset.py -d {RoG-webqsp,RoG-cwq} --split {train,validation,test}
- Build joint-training datasets.
python src/joint_training/preprocess_align.py
python src/joint_training/preprocess_qa.py
- Build interpretable examples.
python src/joint_training/generate_explanation_results.py
</details>
Training RoG
2 A100-80GB GPUs are required for training RoG.
Run: ./scripts/train.sh
Results
<img src="resources/results.png" width = "600" /> <img src="resources/plug-and-play.png" width = "600" /> <img src="resources/lack_of_knowledge.png" width = "600" /> <img src="resources/hallucination.png" width = "600" />Bibinfo
If you found this repo helpful, please help us by citing this paper:
@inproceedings{luo2024rog,
title={Reasoning on Graphs: Faithful and Interpretable Large Language Model Reasoning},
author={Luo, Linhao and Li, Yuan-Fang and Haffari, Gholamreza and Pan, Shirui},
booktitle={International Conference on Learning Representations},
year={2024}
}